

Adamas University School of Basic and Applied Sciences Department of Chemistry

Programme Structure and Syllabus of B.Sc. Chemistry

Programme Code: CHM3403

Duration: 4 Years (Full Time)

Academic Year: 2024-25

Vision of the University

To be an internationally recognized university through excellence in inter-disciplinary education, research and innovation, preparing socially responsible well-grounded individuals contributing to nation building.

Mission of the University

- Improve employability through futuristic curriculum and progressive pedagogy with cutting-edge technology
- Foster outcomes based education system for continuous improvement in education, research and all allied activities
- Instill the notion of lifelong learning through culture of research and innovation
- Collaborate with industries, research centers and professional bodies to stay relevant and up-to-date
- Inculcate ethical principles and develop understanding of environmental and social realities

Core Values

- Respect
- Positivity
- Commitment
- Accountability
- Innovation

Vision of the School

To be recognised globally as a provider of education in Basic and Applied Sciences, fundamental and interdisciplinary research.

Mission of the School

- Develop solutions for the challenges in sciences through value-based science education.
- Conduct research leading to innovation in sciences.
- Nurture students into scientifically competent professionals in the usage of modern tools.
- Foster in students, a spirit of inquiry and collaboration to make them ready for careers in teaching, research and corporate world.

Vision of the Department

The Vision of the Department of Chemistry is to generate and disseminate Chemistry education among its pupils such that at individual level, a Chemistry graduate should be inspired with a sense of curiosity and wonder about the fundamental nature of the world around the student; be empowered with the ability to make decisions about their own lives and critically evaluate scientific and technological developments that impact society and lastly be equipped them with the knowledge and skills to pursue further study and rewarding careers in the chemical sciences and a wide range of related fields.

Mission of the Department

- To represent a clear framework or narrative that gives a coherent 'big picture' of chemistry as a subject, explains why it matters, and shows how different areas of content are connected.
- To prepare competitive and professional graduates within an innovative and intellectually stimulating environment, support other academic programs at Adamas University by offering quality chemistry learning experiences, conduct basic and applied research of national and international impact.
- To advance knowledge platform that supports an invent-and-design culture in graduate and undergraduate chemistry education, and that empowers students to address and solve challenges of global significance.
- To reach out to our future thought leaders—students of all backgrounds from pre-college to doctoral candidates—to share the power of chemistry to create new knowledge directed at the major unmet needs of our time.

Programme Educational Objectives (PEO) of BSc Chemistry

PEO 01: To cultivate a firm foundation in the fundamentals and application of current chemical and scientific theories including those in Analytical, Inorganic, Organic and Physical Chemistries.

PEO 02: To appreciate the importance of various elements present in the periodic table, coordination chemistry and structure of molecules, properties of compounds, structural determination of complexes using theories and instruments.

PEO 03: To be able to design and carry out scientific experiments as well as accurately record and analyze the results of such experiments.

PEO 04: To employ critical thinking and the scientific knowledge to design, carryout, record and analyse the results of chemical reactions.

PEO 05: To Create an awareness of the impact of chemistry on the environment, society, and development outside the scientific community

Programme Outcomes (POs) and Programme Specific Outcomes (PSOs) of BSc Chemistry:

PO1	Chemoinformatics	To apply contextual knowledge and modern tools of chemical research for solving problems
PO2	Elementary knowledge	To cultivate a firm foundation in the fundamentals and application of current chemical and scientific theories including those in Analytical, Inorganic, Organic and Physical Chemistries.
PO3	Fundamental Knowledge	To appreciate the importance of various elements present in the periodic table, coordination chemistry and structure of molecules, properties of compounds, structural determination of complexes using theories and instruments.
PO4	Mechanistic and Analyzing knowledge	Understands the background of organic reaction mechanisms, complex chemical structures, and instrumental method of chemical analysis, molecular rearrangements and separation techniques.
PO5	Experimentalism	To be able to design and carry out scientific experiments as well as accurately record and analyze the results of such experiments.
PO6	Instrumentation knowledge	Upon completion of a BSc in Chemistry degree, students are able to understand theoretical concepts of instruments that are commonly used in most chemistry fields as well as interpret and use data generated in instrumental chemical analyses.
PO7	Sustainable approach	Find out the green route for chemical reaction for sustainable development.
PSO1	Software knowledge	Use modern chemical tools, Models, Chem-draw, Charts and Equipment's.
PSO2	Applications	Learns about the potential uses of analytical industrial chemistry, medicinal chemistry and green chemistry.
PSO3	Ethics	Understand the ethical, historic, philosophical, and environmental dimensions of problems and issues facing chemists. Recognize different value systems including your own, understand the moral dimensions of your decisions, and accept responsibility for them.

Course Code	Course Name	COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO 2	PSO 3
CHM101	Fundamental	CO1	2	3	3	2	2	2	1	1	1	1
	Chemistry I	CO2	1	2	2	2	3	1	1	1	2	1
		CO3	2	3	3	2	2	2	1	1	1	1
		CO4	2	3	3	3	2	2	1	2	2	2
		CO5	1	3	3	3	2	1	1	1	2	2
		CO6	1	2	2	2	3	3	1	1	2	1
		CO										
CHM102	Fundamental	C01	1	3	3	2	1	1	1	1	1	1
	Chemisu y II	CO2	1	3	3	3	2	2	1	1	1	1
		CO3	1	3	3	3	2	1	1	1	2	1
		CO4	1	3	3	3	2	1	1	1	2	1
		CO5	1	3	3	2	1	1	1	1	2	1
		CO6	1	3	3	3	3	2	1	1	2	1
		СО										
CHM105	General Chemistry I	C01	2	3	3	3	1	1	1	1	2	1
	Chemistry I	CO2	2	3	3	3	1	2	1	1	2	1
		CO3	2	3	3	2	1	1	1	1	2	1
		CO4	2	3	3	3	1	1	1	2	3	1
		CO5	2	3	3	3	2	1	1	1	3	1
		CO6	2	3	3	3	3	2	1	1	2	1
		CO										
CHM106	General Chemistry II	C01	2	3	3	3	1	2	1	1	3	1
	Chemistry H	CO2	2	3	3	3	2	2	2	1	3	1
		CO3	2	3	3	3	1	1	1	2	2	1
		CO4	2	3	3	3	1	1	2	2	3	1
		CO5	2	3	3	3	2	1	1	1	3	1
		CO6	1	3	3	2	3	3	1	1	2	1
		CO										
CHM109	Green Methods in Chemistry	CO1	1	3	3	2	1	1	3	1	3	3
	in chemistry	CO2	2	3	3	3	2	1	3	1	3	2

Program Outcome vs Courses Mapping Table

		CO3	2	3	3	3	2	1	3	2	3	2
		CO4	1	3	2	3	2	1	3	1	2	3
		CO5	2	3	3	3	3	1	3	2	3	2
		CO6	2	3	3	3	3	1	3	2	3	2
		СО										
CHM201	General	CO1	2	3	3	3	3	2	1	1	2	1
	Chemisu y m	CO2	2	3	2	2	2	1	1	1	3	1
		CO3	2	3	3	3	2	2	1	1	2	1
		CO4	2	3	3	3	3	2	1	1	2	2
		CO5	2	3	3	2	3	2	1	2	2	2
		CO6	2	3	3	3	3	2	1	1	2	1
		СО	2	3	2.83	2.67	2.67	1.83	1	1.67	2.17	1.33
CHM202	General	CO1	2	3	3	2	3	2	1	1	2	1
	Chemistry IV	CO2	2	3	3	3	2	2	1	1	3	1
		CO3	2	3	3	2	1	2	1	1	2	1
		CO4	2	3	3	3	3	2	1	2	2	2
		CO5	2	3	3	3	3	2	1	2	2	2
		CO6	2	3	3	2	3	3	1	1	2	1
		СО	2	3	3	2.5	2.5	2.17	1	1.33	2.17	1.33
SEC107	Fuel Chemistry	CO1	1	3	3	2	1	1	3	1	2	2
		CO2	1	3	3	2	1	2	3	1	2	2
		CO3	1	3	3	2	1	2	3	1	2	2
		CO4	2	3	3	2	1	2	3	1	3	2
		CO5	2	3	3	2	3	2	2	1	3	2
		CO6	2	3	3	2	3	3	2	1	3	3
		СО	1.5	3	3	2	1.67	2	2.67	1	2.5	2.17
		CO1	2	3	3	3	2	1	2	2	3	2
		CO2	2	3	3	3	3	1	2	2	3	2
		CO3	2	3	3	3	3	1	2	1	3	2
CHM205	Organic	CO4	2	3	3	3	2	1	2	1	3	2
	Cnemistry I	CO5	3	3	3	3	2	1	1	1	3	3
		CO6	2	3	3	2	3	3	2	1	3	3
		СО	2.17	3	3	2.83	2.5	1.33	2.17	1.3	3	2.33
CHM206	Physical	C01	2	3	3	3	2	2	1	1	3	2
1	1	1	1	1	1	1	1	1	1	1	1	1

	Chemistry I	CO2	2	3	3	3	2	2	1	1	3	2
		CO3	2	3	3	3	2	1	1	1	3	2
		CO4	2	3	3	3	2	1	1	1	3	2
		CO5	2	3	3	3	2	1	2	1	3	2
		CO6	2	3	3	3	3	3	1	1	3	3
		CO	2	3	3	3	2.17	1.67	1.17	1	3	2.17
		CO1	2	3	3	3	2	1	1	1	2	1
		CO2	2	3	3	3	2	1	1	1	2	1
		CO3	2	3	3	3	2	1	1	1	2	1
CHM207	Inorganic Chemistry I	CO4	2	3	3	3	2	1	1	1	2	1
	Chemistry I	CO5	2	3	3	3	2	1	1	1	2	1
		CO6	2	3	3	3	3	3	1	1	2	2
		СО	2	3	3	3	2.17	1.33	1	1	2	1.17
		CO1	2	3	3	2	2	1	1	3	3	2
		CO2	2	3	3	3	3	2	1	3	3	2
		CO3	2	3	3	3	3	2	1	3	3	2
SEC108	Pharmaceutical Chamistry	CO4	2	3	3	3	2	1	1	3	3	2
	Chennisu y	CO5	2	3	3	2	2	1	3	2	3	3
		CO6	2	3	3	2	3	2	3	3	3	3
		СО	2	3	3	2.5	2.5	1.5	1.67	2.83	3	2.33
CHM301	Organic Chamistry II	CO1	3	3	3	3	2	1	1	1	2	1
	Chemistry II	CO2	2	3	3	3	2	1	1	1	2	1
		CO3	3	2	3	2	3	1	1	1	2	1
		CO4	3	2	3	3	3	1	1	1	2	1
		CO5	3	2	2	2	3	3	1	1	2	2
		CO6	2	2	2	2	3	3	1	1	2	2
		CO	2.67	2.33	2.67	2.5	2.67	1.67	1	1	2	1.33
CHM302	Physical Chemistry II	CO1	3	3	3	3	1	1	1	2	2	1
	Chemisu y II	CO2	3	3	3	3	1	1	1	2	2	1
		CO3	2	3	3	3	2	1	1	1	2	1
		CO4	2	3	3	3	2	1	1	1	2	1
		CO5	2	3	3	3	2	1	1	1	2	1
		CO6	3	2	3	3	1	1	1	2	2	1
		СО	2.5	2.83	3	3	1.5	1	1	1.5	2	1

CHM303	Inorganic	CO1	2	3	3	2	1	1	1	1	3	1
	Chemistry II	CO2	2	3	3	3	2	1	1	1	2	1
		CO3	2	3	3	3	2	1	2	1	2	2
		CO4	3	3	3	3	2	3	1	1	3	1
		CO5	2	3	3	3	3	2	1	1	2	1
		CO6	1	2	2	3	3	3	1	1	2	1
		СО	2	2.83	2.83	2.83	2.17	1.83	1.17	1	2.33	1.17
	Mathematics for Chemistry	CO1	2	1	2	2	1	2	1	3	2	1
	Chennsuy	CO2	2	3	2	2	1	1	1	2	2	1
		CO3	2	2	3	2	1	1	1	2	2	1
		CO4	2	3	2	2	1	1	1	2	2	1
		CO5	3	2	3	3	2	2	1	3	3	1
		CO6	3	2	3	3	2	2	1	3	3	1
		CO	2.33	2.17	2.5	2.33	1.33	1.5	1	2.5	2.33	1
CHM305	Internship	C01	3	2	2	3	2	2	2	3	3	2
		CO2	3	3	2	3	2	2	2	2	3	2
		CO3	2	2	2	2	2	2	1	1	2	3
		CO4	1	2	1	2	1	1	3	1	2	3
		CO5	3	3	3	3	3	2	2	3	3	2
		CO6	1	2	2	2	2	1	2	2	2	3
		СО	2.17	2.33	2	2.5	2	1.67	2	2	2.5	2.5
CHM306	Spectroscopy	CO1	3	3	3	3	2	3	1	3	2	1
		CO2	3	3	3	3	2	3	1	3	2	1
		CO3	3	3	3	3	2	3	1	3	2	1
		CO4	2	2	2	3	2	3	1	2	3	1
		CO5	3	3	3	3	2	2	1	3	3	1
		CO6	2	2	2	2	3	3	1	2	3	1
		CO	2.67	2.67	2.67	2.83	2.17	2.83	1	2.67	2.5	1
CHM307	Organometallics and Reaction	CO1	2	3	3	2	1	1	1	1	3	1
	Kinetics	CO2	3	3	3	3	2	3	1	2	3	2
		CO3	2	3	3	2	3	2	2	2	3	1
		CO4	3	3	3	3	3	3	2	2	3	2
		CO5	2	3	3	3	3	3	2	2	3	2
		CO6	3	3	3	3	2	3	2	2	3	2

		CO	2.5	3	3	2.67	2.33	2.5	1.67	1.83	3	1.67
CHM308	Solid State	CO1	2	3	3	2	1	3	1	2	3	1
	Chemisuy	CO2	3	3	3	3	2	3	1	2	3	2
		CO3	2	3	3	3	2	2	1	2	3	2
		CO4	2	3	3	3	2	2	1	2	3	2
		CO5	1	3	3	3	3	3	2	3	3	2
		CO6	2	3	3	3	3	3	1	3	3	2
		CO	2	3	3	2.83	2.17	2.67	1.17	2.33	3	1.83
CHM309	Materials of	CO1	2	3	3	2	2	2	1	1	3	1
	Importance	CO2	2	3	3	2	2	2	2	2	3	3
		CO3	3	3	3	3	3	3	2	3	3	2
		CO4	2	3	3	3	3	3	1	3	3	2
		CO5	2	3	3	3	3	3	1	3	3	2
		CO6	2	3	3	3	3	3	2	3	3	2
		СО	2.17	3	3	2.67	2.67	2.67	1.5	2.5	3	2
CHM312	Project	CO1	2	3	2	2	2	2	1	2	3	2
		CO2	3	3	2	2	3	2	2	3	3	2
		CO3	2	3	3	3	3	3	2	2	3	2
		CO4	2	3	2	3	3	2	2	2	3	3
		CO5	1	3	2	1	2	1	1	2	3	3
		CO6	3	3	3	3	2	3	2	3	3	3
		CO	2.17	3	2.33	2.33	2.5	2.17	1.67	2.33	3	2.5
		CO1	2	3	3	2	1	1	1	2	2	2
		CO2	3	3	3	3	1	2	2	2	2	1
		CO3	3	3	2	3	3	3	2	3	3	1
CHM401	Fundamentals of nanomaterials	CO4	2	3	3	3	2	3	2	2	3	2
		CO5	3	2	2	3	3	3	2	3	2	1
		CO6	3	2	2	3	3	3	2	3	2	2
		СО	2.67	3	2.83	2.83	2.2	2.5	1.83	2.5	2.33	1.5
		CO1	3	2	2	3	2	3	3	2	2	1
	Supramolecular	CO2	3	3	2	3	1	2	2	2	3	1
CHM407	Chemistry and	CO3	2	2	3	3	1	2	2	2	3	1
China (o)	its application	CO4	2	2	3	2	1	3	2	3	2	1
		CO5	2	1	2	2	3	2	1	3	2	1

		CO6	3	3	3	3	2	3	2	3	3	2
		СО	2.5	2.2	2.5	2.67	1.67	2.5	2	2.5	2.5	1.2
		CO1	2	3	3	2	1	1	1	1	2	2
		CO2	2	3	3	2	1	1	1	1	2	2
	Inorganic	CO3	2	2	2	3	3	2	1	1	2	2
CHM404	Cluster and spectroscopic	CO4	2	3	3	3	2	2	2	2	3	2
	application	CO5	2	2	2	3	3	3	2	3	3	3
		CO6	3	3	3	3	2	3	3	3	3	3
		СО	2.16	3	3	3	2	2	1.67	1.83	2.5	2.34
		CO1	2	3	3	2	1	1	2	2	1	2
		CO2	2	2	3	3	1	2	2	2	1	2
		CO3	2	2	3	2	2	3	1	2	2	1
	Polymer and Paints	CO4	3	3	3	3	2	3	2	3	2	1
		CO5	2	3	2	2	3	3	3	2	3	3
		CO6	3	3	2	3	3	3	2	3	2	2
		СО	2.33	3	3	2.5	2	2.5	2	2.33	1.83	1.67
		CO1	2	2	3	3	2	2	2	1	2	3
		CO2	2	2	3	3	1	1	1	2	3	2
	Photochemical	CO3	3	3	3	3	2	2	2	2	3	2
CHM106	and pericyclic	CO4	3	3	3	3	1	2	1	2	2	3
	reactions	CO5	2	2	2	2	3	3	3	2	3	2
		CO6	3	3	3	3	3	2	2	3	3	2
		СО	2.5	2.5	2.84	2.84	2	1.66	1.66	2	2.6	2.45
		CO1	2	3	2	1	1	1	1	2	1	2
		CO2	3	3	2	1	1	3	1	2	3	1
CUN4100	Research	CO3	3	3	2	2	2	3	2	3	3	1
Спм109	Methodology	CO4	2	2	2	3	1	3	2	2	2	3
		CO5	1	2	1	2	3	1	2	1	1	1
		CO6	3	3	3	2	2	3	3	3	3	2
CHM409	Medical	СО	2.34	2.67	2	1.89	1.66	2.34	1.89	2.11	2.12	1.67
	technology	CO2	2	1	1	-	2	1	2	1	1	1
		CO3	2	1	1	-	2	1	2	2	1	1
		CO4	2	1	1	_	2	1	2	1	1	1
		CO5	2	1	2	-	2	1	1	1	1	1

		CO6	1	1	1		2	1	2	0	0	1
		СО	1	1	1	-	2	1	3	0	0	1
	Analytical	CO1	2	1.1	1.33	-	2	1	2	1	1	1.16
	Methods in		2	1	1	-	1	3	1	1	2	1
	Industry		2	1	1	-	1	2	1	-	1	1
		CO3	2	1	1	-	1	2	1	2	1	1
		CO4	2	1	1	-	1	1	1	1	-	1
		CO5	3	2	2	-	1	1	1	2	1	2
		CO6	3	2	2	-	1	1	1	1	1	2
		СО	2.3	1.33	1.33	-	1	1.6	1	1.16	1	1.33
CHM410	Reagent	CO1	3	2	1	3	2	1	2	1	1	1
	Chemistry	CO2	3	2	1	3	1	2	1	1	2	2
		CO3	3	3	1	3	3	1	2	1	1	2
		CO4	2	2	1	2	2	1	1	1	2	2
		CO5	2	2	1	2	2	1	1	1	2	1
		CO6	2	2	1	2	2	1	1	2	2	1
		СО	2	25	1	3	2	12	1.4	1	16	15
CHM413	Natural Products	CO1	2.0	2.5	1	3	2.2	1.2	1.4	1	1.0	1.5
	and Bio-organic Chemistry	CO2	2	2	2	3	2	1	2	1	1	1
		CO3	2	2	1	3	1	2	1	1	2	2
		CO4	3	3	1	3	3	1	2	1	1	2
		CO5	2	2	2	2	3	1	1	1	3	2
		C06	3	3	1	2	2	1	1	1	3	1
			3	3	1	2	2	1	1	1	3	1
CID (41)	D : (3	2.5	1.33	2.5	2.1	1.1	1.3	1	2	1.5
CHM416	Project		3	2	2	1	2	1	2	1	1	2
		CO2	3	2	2	1	2	2	1	1	3	2
		CO3	3	3	2	1	3	1	2	1	1	2
		CO4	2	2	2	2	3	1	1	1	3	2
		CO5	3	3	1	1	2	1	1	1	3	1
	-	CO6	3	3	1	1	2	1	1	1	3	1
			5	5		-		1	-	1	5	

Correlation level 1, 2 and 3 as defined below:

"1" – Slight (Low)

"2" – Moderate (Medium)

"3" – Substantial (High) **"-"** – No correlation

School of Basic and Applied Sciences Department of Chemistry

BSc Chemistry Batch: 2024-2028 Semester: I

S.No	Type of	Type of Code	Title of the Course	C	onta	Remarks			
	Course		L	Т	Р	С			
1	CC	CHM101	Fundamental Chemistry-I	3	0	1	4	CC-1	
2	CC	CHM102	Fundamental Chemistry-II	3	0	1	4	CC-2	
3	MDC						3		
4	AEC	AEC101	Communicative English I	3	0	0	3		
5	Minor			3	0	1	4		
6	VAC	VAC101	Environmental Education I	2	0	0	2		
	Semester Credits								

SYLLABUS

School	School of Basic and Applied Sciences (SOBAS)
Programme/Discipline	B.Sc. (H) Chemistry
Batch	2024-28
Semester	Ι
Course Title	Fundamental Chemistry I
Course Code	CHM101
Credit	4
Contact Hours	3-0-1
(L-T-P)	
Course Type	Hybrid
Course Objective	The course aims to provide students with a comprehensive understanding of key concepts in physical, atomic, and organic chemistry. It introduces the fundamental principles governing the behavior of gases, liquids, and atomic structures, and explores the molecular interactions that dictate chemical bonding and physical properties. Through theoretical learning and laboratory experiments, students will develop skills to analyze chemical reactions, reaction intermediates, and the physical characteristics of substances. Additionally, the course fosters an understanding of quantum mechanics, molecular orbitals, and reaction mechanisms essential for advanced studies in chemistry.
Course Outcome (CO)	After completion of this course, students will be able to: CO1: Analyze the behavior of gases using the kinetic theory, Maxwell's distribution, and the van der Waals equation, and explain the deviations from ideal gas behavior. CO2: Apply the principles of liquid state properties, including viscosity, surface tension, and capillary rise, to explain fluid flow behavior and determine these properties experimentally. CO3: Describe the quantum mechanical model of the atom, including wave functions, orbital shapes, and the significance of quantum numbers, and use this to determine the electronic configuration of multielectronic systems.

CO4: Compare and contrast various bonding theories, including
Valence Bond Theory (VBT) and hybridization, and use these
concepts to explain the structure and reactivity of organic
molecules.
CO5: Investigate reaction intermediates such as carbocations,
carbanions, and radicals, and describe their stability, generation,
and role in electrophilic and nucleophilic reactions.
CO6: Conduct laboratory experiments to measure physical
properties such as surface tension and viscosity, and apply
qualitative analysis to detect specific acid radicals and elements in
organic compounds.

Course Outline

Module	Description
Ι	Gaseous state- Arguments of Kinetic Theory of gas, Maxwell's distribution of speeds
	& energy. average, root mean square and most probable speed and energy, principle of
	equipartition of energy and molar heat capacity of gases, Collision of gas molecules
	and viscosity. Deviation of gases from ideal behaviour. Critical temperature and Boyle
	temperature. van der Waals equation of state; the law of corresponding states; virial
	equation. Continuity of state.
II	Liquid State- Vapour Pressure. Surface tension, surface energy, capillary rise.
	Spreading of liquid over surface. Viscosity: General features of fluid flow, Newton's
	equation, viscosity coefficient, Poiseuille equation, temperature dependence of
	viscosity coefficient and surface tension. Experimental determination of viscosity and
	surface tension.
III	Atomic structure- Bohr's atomic model and its limitation, wave mechanical model:
	de Brogile hypothesis and matter waves, Schrodinger's wave equation, wave function
	and the concept of probability, radial and angular probability distributions, shapes of s ,
	p, d and f orbitals, Concept of quantum numbers and their significance, Aufbau
	principle, Hund's rule and Pauli's exclusion principle for determining electronic
	configuration of multielectronic systems. Concept of exchange energy, L-S coupling,
	Ground state Term symbols of atoms.
IV	Bonding feature in organic molecules- IUPAC nomenclature, Valance Bond Theory
	(VBT), DBE/IHD calculation, hybridisation, representation the gross structural
	formulae, factors influencing electron availability, intermolecular forces explaining
	physical properties (Dispersion Forces (also called London Forces), Dipole-Dipole
	Force, Hydrogen Bonds, Ion-Dipole Force, van der Waals forces, noncovalent
	interaction), aromaticity.
V	Reaction intermediates- carbocations, carbanions, carbon radicals, carbenes: structure

	using orbital picture, electrophilic/nucleophilic behaviour, stability, generation and fate
	(elementary idea).
VI	Lab-
	1. Determine the surface tension by (i) drop number (ii) drop weight method.
	2. Study the variation of surface tension of detergent solutions with concentration.
	3. Study of viscosity of unknown liquid (glycerol, sugar) with respect to water.
	4. Study of the variation of viscosity with the concentration of the solution.
	5. Qualitative analysis of acid radicals
	$Cl^-, Br^-, I^-, NO_3^-, SCN^-, S^{2-}, SO_4^{2-}, NO_2^-, PO_4^{3-}, [Fe(CN)_6]^{4-}, [Fe(CN)_6]^{3-}$
	 Detection of special elements (N, Cl, S) in organic molecules by Lassaigne's test.

Evaluation:

Mode of Evaluation	Theory + Practical		
Weightage	Comprehensive and ContinuousEnd Semester ExaminaAssessment		
	50%	50%	

Reference books:

- 1. Huheey, Keiter and Keiter, Principles of Inorganic Chemistry,
- 2. R. Sarkar, Vol. 1 Inorganic Chemistry,
- 3. Concise Inorganic Chemistry by J. D. Lee,
- 4. Finar, I. L. Organic Chemistry (Volume 1), Dorling Kindersley (India) Pvt. Ltd.(Pearson Education),
- 5. Sykes, P. A Guidebook to Mechanism in Organic Chemistry, Orient Longman, New Delhi (1988),
- 6. Clayden, J.; Greeves, N.; Warren, S.; Wothers, P.; Organic Chemistry, Oxford University Press,
- Atkins, P. W. & Paula, J. de Atkin's Physical Chemistry 10th Ed., Oxford UniversityPress (2014),
- 8. P.C. Rakshit, Physical Chemistry 7th Edition (2004),
- 9. Chatterjee, H. Physical Chemistry, Vol-1, Edition, Platinum publishers,
- 10. Das, S.C. Advanced Practical Chemistry, Sixth edition.

SYLLABUS

School	School of Basic and Applied Sciences (SOBAS)
Programme/Discipline	B.Sc. (H) Chemistry
Batch	2024-28
Semester	Ι
Course Title	Fundamental Chemistry II
Course Code	CHM102
Credit	4
Contact Hours	3-0-1
(L-T-P)	
Course Type	Hybrid
Course Objective	The course aims to introduce students to fundamental concepts in thermodynamics, chemical kinetics, periodic properties, radioactivity, and stereochemistry, with an emphasis on their practical applications in chemistry. Students will develop a strong understanding of the laws of thermodynamics, chemical reactions, periodic trends, and molecular symmetry. Through theoretical lessons and laboratory experiments, students will gain proficiency in analyzing energy changes, reaction rates, radioactive decay, and the stereochemical properties of molecules. This course will provide a foundational knowledge required for advanced studies in physical and inorganic chemistry.
Course Outcome (CO)	After completion of this course, students will be able to: CO1: Explain the fundamental concepts of thermodynamics, including system types, thermodynamic equilibrium, and the Zeroth law of thermodynamics, to understand the scope and importance of the subject. CO2: Apply the first law of thermodynamics to analyze isothermal, reversible, and irreversible processes, calculating work done, heat capacity, and Joules experiment, while distinguishing between state and path functions. CO3: Evaluate the heat changes in thermochemical processes at constant pressure and volume, using Kirchhoffs relations and bond dissociation energies to understand the thermodynamic changes during chemical reactions.

CO	04: Analyze chemical kinetics by deriving and interpreting rate
lav	is for elementary and multistep reactions, and applying the
Ar	rhenius equation to calculate the energy of activation for
va	ious reactions.
CO	05: Investigate periodic properties such as effective nuclear
cha	arge, atomic and ionic radii, ionization potential, and
ele	ctronegativity, and understand their trends across groups and
per	iods in the periodic table.
CO	06: Perform qualitative analysis of functional groups in organic
со	npounds and basic radicals, and apply stereochemical concepts
suc	ch as chirality, optical activity, and conformational analysis to
pre	dict molecular behavior and stability.

Course Outline

Module	Description					
Ι	Thermodynamics I					
	a) Introduction to Thermodynamics- Importance and scope, definition of					
	system and surroundings: type of systems; extensive and intensive properties;					
	Thermodynamic equilibrium. The zeroth law of thermodynamics.					
	 b) 1st law of thermodynamics and consequences- Isothermal reversible and irreversible workdone. 1st law of thermodynamics, state functions and path functions. Concept of heat capacity. Joule's Experiment. Joule coefficient for vander Waal gas. Adjabatic process 					
	valider waar gas. Adrabatic process.					
	c) <i>Thermochemistry</i> - Heat changes during physicochemical processes at constant					
	pressure and constant volume; Kirchhoff's relations; bond dissociation					
	energies; changes of thermodynamic properties in different chemical changes.					
II	Chemical Kinetics-I- Differential rate law, idea of elementary and multistep reactions,					
	order and molecularity, integrated rate law for zero, 1 st and 2 nd order reaction Arrhenius					
	equation, energy of activation.					
III	Periodic properties- Effective nuclear charge and Slater's rule, atomic, ionic and					
	covalent radii and their group and periodic trends for s , p and d block elements,					
	ionization potential, electron affinity and electronegativity and their group and periodic					
	variation for s and p block elements. Relativistic and inert pair effect.					
IV	Radioactivity- Radioactivity, radioactive displacement law, half-life and average life					
	of radioactive elements, n/p ratio, nuclear binding energy. Liquid drop model, fission,					

	fusion analysism and artificial transmutation matrices. Nuclear neuron convertion and				
	fusion, spanation, and artificial transmutation reactions. Nuclear power generation and				
	its application.				
V	Stereochemistry- Symmetry elements, representation of molecules in different				
	conformations and their inter-conversions, molecular chirality, stereogenicity,				
	chirotopicity, Configurations, Optical activity (specific rotation, optical purity				
	(enantiomeric excess), racemic compounds, racemisation, resolution), topicity of				
	ligands and faces, Conformational analysis: nomenclature, dihedral angle, torsion				
	angle, energy barrier of rotation, relative stability, dipole-dipole interaction, H-				
	bonding, classification and stability, conformational analysis of small aliphatic acyclic				
	(ethane, propane, n-butane, haloethane, 1,2-haloethane, 1,2- glycol, 1,2-halohydrin				
	etc.) and cyclic molecules (3, 4, 5, 6-membered rings; mono- and di-substituted				
	cyclohexane).				
VI	Lab				
	1. Determination of heat capacity of a calorimeter for different volumes using				
	change of enthalpy data of a known system,				
	2. Determination of heat of neutralization of a strong acid by a strong base,				
	3. Detection of the following functional groups in organic molecules: Aromatic -				
	NH ₂ , aromatic -NO ₂ , -CONH ₂ , Phenolic –OH, -COOH, >C=O.				
	4. Qualitative analysis of basic radicals: Na^+ , K^+ , Ca^{2+} , Sr^{2+} , Ba^{2+} ,				
	Al ³⁺ ,Mn ²⁺ Fe ³⁺ , Co ²⁺ , Ni ²⁺ , Cu ²⁺ , Zn ²⁺ , NH ₄ ⁺ , Mg ²⁺ .				

Evaluation:

Mode of Evaluation	Theory +Practical	
Weightage	Comprehensive and Continuous	End Semester Examination
	Assessment	
	50%	50%

Reference books:

- 1. Huheey, Keiter and Keiter, Principles of Inorganic Chemistry,
- 2. R. Sarkar, Vol. 1 Inorganic Chemistry,
- 3. Concise Inorganic Chemistry by J. D. Lee,
- 4. Finar, I. L. Organic Chemistry (Volume 1), Dorling Kindersley (India) Pvt. Ltd.(Pearson Education),
- 5. Sykes, P. A Guidebook to Mechanism in Organic Chemistry, Orient Longman, New Delhi (1988),

- 6. Clayden, J.; Greeves, N.; Warren, S.; Wothers, P.; Organic Chemistry, Oxford University Press,
- 7. Atkins, P. W. & Paula, J. de Atkin's Physical Chemistry 10th Ed., Oxford University Press (2014),
- 8. P.C. Rakshit, Physical Chemistry 7th Edition (2004),
- 9. Chatterjee, H. Physical Chemistry, Vol-1, Edition, Platinum publishers,
- 10. Das, S.C. Advanced Practical Chemistry, Sixth edition.

School of Basic and Applied Sciences Department of Chemistry

BSc Chemistry Batch: 2024-2028 Semester: II

S.No	Type of	Code	Title of the Course	Contact Hours Per Week				Remarks
	Course			L	Τ	Р	С	
1	CC	CHM105	General Chemistry-I	3	0	1	4	CC-3
2	CC	CHM106	General Chemistry-II	3	0	1	4	CC-4
3	MDC						3	
4	SEC	SEC106	Green Methods in Chemistry	1	0	1	2	
5	VAC	VAC105	Community Engagement and Social Responsibility	2	0	0	2	
6	AEC	AEC102	Communicative English II	3	0	0	3	
7	Minor						4	
Semester Credits				22				

SYLLABUS

School	School of Basic and Applied Sciences (SOBAS)
Programme/Discipline	B.Sc. (H) Chemistry
Batch	2024-28
Semester	П
Course Title	General Chemistry I
Course Code	CHM105
Credit	4
Contact Hours	3-0-1
(L-T-P)	
Course Type	Hybrid
Course Objective	The course aims to provide a comprehensive understanding of advanced thermodynamic principles, including the second law of thermodynamics, entropy, and various thermodynamic processes such as the Carnot cycle, Clausius inequality, and Joule-Thomson cooling. It also introduces students to the behavior of open systems, chemical potential, and the application of equations like Gibbs-Duhem and Euler's theorem in ideal and non-ideal systems. The course covers ionic and covalent bonding, emphasizing theories like the radius ratio rule, Born-Haber cycle, Valence Bond Theory, and Molecular Orbital Theory. It also focuses on the in-depth study of nucleophilic substitution and elimination reactions, exploring their mechanisms, stereochemistry, and reaction conditions. Through laboratory work, students will enhance their experimental skills by investigating chemical kinetics, adsorption isotherms, and optical activity, connecting theoretical knowledge with practical applications.
Course Outcome (CO)	After completion of this course, students will be able to: CO1: Analyze the second law of thermodynamics, including the Clausius and Kelvin-Planck statements, Carnot cycle, and the concept of entropy, while applying the Gibbs-Helmholtz equation and Maxwell's relations to solve thermodynamic problems. CO2: Investigate the Joule-Thomson experiment, understanding Joule-Thomson cooling and the coefficient of the process, and

calculate the effects for van der Waals gases.
CO3: Apply the concepts of chemical potential, activity, and
fugacity in open and non-ideal systems, and use the Gibbs-Duhem
equation to analyze the behavior of substances under varying
temperature and pressure conditions.
CO4: Explain ionic and covalent bonding by applying the radius
ratio rule, lattice energy, Born-Lande equation, and Fajans rule,
and understand molecular orbitals through LCAO approach and
MO diagrams for diatomic molecules.
CO5: Evaluate nucleophilic substitution and elimination reactions
by classifying different mechanisms (SN ¹ , SN ² , E1, E2),
understanding their stereochemical features, and comparing
substitution vs elimination processes in terms of reaction rate and
product distribution.
CO6: Conduct experiments to study chemical kinetics, such as the
decomposition of H ₂ O ₂ and acid-catalyzed hydrolysis of methyl
acetate, while determining specific rotation of optically active
compounds and verifying adsorption isotherms for acetic acid on
activated charcoal.

Course Outline

Module	Description					
Ι	Thermodynamics II					
	 a) Second law of Thermodynamics & entropy- Second law of thermodynamics: need for a second law, Clausius and Kelvin-Planck statements and their equivalence; Carnot's theorem, thermodynamic scale of temperature, concept of heat engine, Carnot cycle and refrigerator. Clausius inequality, entropy as a state function, calculation of entropy change for various transformation; auxiliary state function (G and A) Gibbs-Helmholtz equation; Maxwell's relation, thermodynamic equation of state. b) Joule-Thomson Experiment- Joule-Thomson cooling, co-efficient of Joule-Thomson process(u,) evaluation of u for van der Waal's gases 					
	 c) Open system- Chemical potential and activity. Variation of with temperature and pressure, Gibbs-Duhem equation; Euler's theorem; expression for ideal gas. Non-ideal system: idea of fugacity and activity; standard states. 					
II	Ionic bonding- Radius ratio rule and its applications; Packing of ions in crystals.					
	 relation, thermodynamic equation of state. b) Joule-Thomson Experiment- Joule-Thomson cooling, co-efficient of Joule-Thomson process(µ_{JT}), evaluation of µ_{JT} for van der Waal's gases. c) Open system- Chemical potential and activity. Variation of with temperature and pressure, Gibbs-Duhem equation; Euler's theorem; expression for ideal gas. Non-ideal system: idea of fugacity and activity; standard states. Ionic bonding- Radius ratio rule and its applications; Packing of ions in crystals. 					

	Lattice energy and Born-Lande equation, Born-Haber cycle and its application.					
III	Unit-3: Covalent bonding- a) Fajan's rule and its application, Valence Bond Theory,					
	VSEPR theory, Bent's rule, hybridization, resonance. b) Concept of molecular orbitals					
	in bonding through LCAO approach. MO diagrams of homonuclear diatomic					
	molecules (H ₂ , B ₂ , C ₂ , N ₂ , O ₂ , F ₂) and heteronuclear diatomic molecules (CO, NO,					
	NO^+ , CN^- , HF, HCl).					
IV	Unit-4: Molecular Orbital Theory- Concept of molecular orbitals in bonding through					
	LCAO approach. MO diagrams of homonuclear diatomic molecules and heteronuclear					
	diatomic molecules.					
V	Unit-5: Nucleophilic substitution reactions and elimination reactions: a)					
	Nucleophilic substitution reaction: Classification (SN ¹ , SN ² , SN ² , SN ⁱ , NGP),					
	mechanism, Stereo-chemical features, effects of different parameter on reaction rate. b)					
	Elimination reaction: Classification (E1, E1cB, E2, Syn, Anti), mechanism,					
	geometrical features, effects of different parameter on reaction rate, Saytzeff and					
	Hofmann products, stereoselectivity; substitution vs elimination.					
VI	Lab-					
	1. Study of kinetics of decomposition of H_2O_2 .					
	2. Study of kinetics of acid-catalyzed hydrolysis of methyl acetate.					
	3. Determination of specific rotation of optically active compound.					
	4. Inversion of cane-sugar.					
	5. Verify the Freundlich and Langmuir isotherms for adsorption of acetic acid on					
	activated charcoal.					

Evaluation:

Mode of Evaluation	Theory + Practical				
Weightage	Comprehensive and Continuous End Semester Examination				
	Assessment				
	50%	50%			

Reference books:

- 1. Huheey, Keiter and Keiter, Principles of Inorganic Chemistry,
- 2. R. Sarkar, Vol. 1 Inorganic Chemistry,
- 3. Concise Inorganic Chemistry by J. D. Lee,
- 4. Finar, I. L. Organic Chemistry (Volume 1), Dorling Kindersley (India) Pvt. Ltd.(Pearson Education),
- 5. Sykes, P. A Guidebook to Mechanism in Organic Chemistry, Orient Longman, New Delhi (1988),

- 6. Clayden, J.; Greeves, N.; Warren, S.; Wothers, P.; Organic Chemistry, Oxford University Press,
- 7. Atkins, P. W. & Paula, J. de Atkin's Physical Chemistry 10th Ed., Oxford University Press (2014),
- 8. P.C. Rakshit, Physical Chemistry 7th Edition (2004),
- 9. Chatterjee, H. Physical Chemistry, Vol-1, Edition, Platinum publishers,
- 10. Das, S.C. Advanced Practical Chemistry, Sixth edition.
- 11. Mukherjee, G.N. University handbook of undergraduate chemistry experiments.

SYLLABUS

School	School of Basic and Applied Sciences (SOBAS)			
Programme/Discipline	B.Sc. (H) Chemistry			
Batch	2024-28			
Semester	II			
Course Title	General Chemistry II			
Course Code	CHM106			
Credit	4			
Contact Hours	3-0-1			
(L-T-P)				
Course Type	Hybrid			
Course Objective	This course is designed to provide an in-depth understanding of advanced topics in chemical kinetics, catalysis, acid-base theories, inorganic chemistry, and organic reactions, as well as to develop practical laboratory skills in titration techniques. It covers key aspects of chemical kinetics, including complex reaction mechanisms, the steady-state approximation, collision and transition state theories, and the behavior of different reactors. The course explores both homogeneous and heterogeneous catalysis, emphasizing adsorption isotherms, enzyme catalysis, and surface dynamics. Students will study various acid-base theories, including Bronsted-Lowry, Lewis, and solvent system concepts, and apply the HSAB principle to real-world examples. Additionally, the course delves into the structure, bonding, and properties of important compounds from the s- and p-block elements, as well as the mechanisms of addition reactions in alkenes and alkynes. The laboratory component reinforces theoretical concepts through acid-base titrations, enhancing students' analytical skills and their ability to quantify substances in chemical mixtures.			
Course Outcome (CO)	After completion of this course, students will be able to: CO1: Analyze the mechanisms of opposing, parallel, and consecutive reactions, and apply concepts like the rate- determining step, steady-state approximation, and collision theory			

to explain reaction kinetics in various systems.
CO2: Evaluate catalytic processes by understanding the mechanisms of homogeneous and heterogeneous catalysis, including acid-base catalysis, autocatalysis, enzyme catalysis, and adsorption isotherms such as Langmuir and Freundlich.
CO3: Apply the theories of acid-base chemistry, including Bronsted-Lowry, Lewis, and Lux-Flood concepts, and explain the acid-base behavior of different solvents and superacids using the HSAB principle and Paulings rule.
CO4: Investigate the properties, bonding, and reactions of s- and p-block compounds, such as diborane, boron nitrides, borazine, and polyhalides, and understand their preparation, structure, and applications.
CO5: Analyze the reaction mechanisms of alkenes and alkynes, focusing on addition reactions, regioselectivity, stereoselectivity, and specific reactions like hydroboration, ozonolysis, and electrophilic addition.
CO6: Conduct experiments related to acid-base titration, including the standardization of different solutions and the estimation of carbonate, bicarbonate, and acetic acid in mixtures, demonstrating practical application of titration techniques in quantitative analysis.

Course Outline

Module	Description
I	Chemical Kinetics-II - Opposing, parallel and consecutive reactions, kinetic and thermodynamic control of reaction; idea of rate determining step; steady-state approximation. Collision theory, Outline of transition state theory; primary kinetic salt effect. Lindeman theory of unimolecular reaction. Basic concept of different reactors (CSTR PER Batch etc.)
П	Catalysed reactions Homogeneous catalysis: Mechanism of catalytic action, acid-base catalysis, autocatalysis, chain reaction; enzyme catalysis - Michaelis-Menten equation, turnover number, Lineweaver-Burk plot; influence of temperature and pH.

	Heterogeneous catalysis: Adsorption- Surface dynamics: physical and chemical						
	adsorption, Freundlich and Langmuir adsorption isotherm, multilayer and BET						
	isotherm (outline) and applications, Gibbs adsorption isotherm and surface excess.						
	Heterogeneous catalysis.						
III	Theories of Acid-Base Chemistry- Different theories of acid-base including solvent						
	system, Bronsted-Lowry's concept, Lux-Flood concept and Lewis concept. HSAB						
	principle,						
	gas phase acidity, leveling effects of solvents. Superacids, Pauling's rule.						
IV	s and p block elements- Study of the following compounds with emphasis on						
	structure, bonding, preparation, properties and uses: diborane, boron nitrides, borazine,						
	oxo- and peroxo acids of sulphur, sulphur-nitrogen compounds, polyhalides,						
	pseudohalogens, fluorocarbons.						
V	Reactions of alkenes and alkynes- a) Alkenes: mechanism of addition, reactivity,						
	regioselectivity, stereoselectivity, halogenations, oxymercuration-demercuration,						
	hydroboration, hydrogenation, epoxidation, hydroxylation, ozonolysis, addition. b)						
	alkynes- Electrophilic and nucleophilic additions; dissolving metal, hydration, terminal						
	alkylation.						
VI	Lab: Acid base titration:						
	1. Standardization of sodium hydroxide solution						
	2. Standardization of HCl solution.						
	3. Standardization of acetic acid solution.						
	4. Estimation of carbonate and hydroxide present together in mixture.						
	5. Estimation of carbonate and bicarbonate present together in a mixture.						
	6. Estimation of acetic acid available in vinegar sample.						
	7. Estimation of alkali content of antacid tablet.						

Evaluation:

Mode of Evaluation	Theory + Practical			
Weightage	Comprehensive and ContinuousEnd Semester ExaminationAssessment			
	50%	50%		

Reference books:

- 1. Huheey, Keiter and Keiter, Principles of Inorganic Chemistry,
- 2. R. Sarkar, Vol. 1 Inorganic Chemistry,
- 3. Concise Inorganic Chemistry by J. D. Lee,
- 4. Finar, I. L. Organic Chemistry (Volume 1), Dorling Kindersley (India) Pvt. Ltd.(Pearson Education),

- 5. Sykes, P. A Guidebook to Mechanism in Organic Chemistry, Orient Longman, New Delhi (1988),
- 6. Clayden, J.; Greeves, N.; Warren, S.; Wothers, P.; Organic Chemistry, Oxford University Press,
- 7. Atkins, P. W. & Paula, J. de Atkin's Physical Chemistry 10th Ed., Oxford University Press (2014),
- 8. P.C. Rakshit, Physical Chemistry 7th Edition (2004),
- 9. Chatterjee, H. Physical Chemistry, Vol-1, Edition, Platinum publishers,
- 10. Das, S.C. Advanced Practical Chemistry, Sixth edition.
- 11. Mukherjee, G.N. University handbook of undergraduate chemistry experiments.

SYLLABUS

School	School of Basic and Applied Sciences (SOBAS)				
Programme/Discipline	B.Sc. (H) Chemistry				
Batch	2024-28				
Semester	II				
Course Title	Green Methods in Chemistry				
Course Code	SEC106				
Credit	2				
Contact Hours	1-0-1				
(L-T-P)					
Course Type	Hybrid				
Course Objective	The course aims to provide a comprehensive understanding of Green Chemistry, emphasizing its significance in developing sustainable chemical practices. The curriculum begins with an exploration of the foundational concepts of Green Chemistry, including its definition, necessity, goals, and the challenges faced in its implementation. Following this introduction, students will delve into the twelve principles of Green Chemistry, learning how to design chemical syntheses that prioritize waste prevention, toxicity reduction, and the efficient use of materials. Practical applications will be highlighted, including the calculation of atom economy and the evaluation of greener solvent alternatives, alongside discussions on energy-efficient reaction methods utilizing microwaves and ultrasound. The course will also address the importance of designing safer chemical processes and the development of analytical techniques to minimize hazardous waste. In the final unit, students will investigate real-world examples of green syntheses, showcasing innovative approaches to producing various compounds with reduced environmental impact. By the end of the course, participants will be equipped with the knowledge and skills to implement green practices in their chemical processes, contributing to a more sustainable future.				
Course Outcome (CO)	After completion of this course, students will be able to:				
	CO1: Explain the concept of Green Chemistry, its need, goals, and				

limitations, and identify the obstacles in achieving the sustainable objectives of Green Chemistry.
CO2: Apply the twelve principles of Green Chemistry in the design of chemical syntheses, including maximizing atom economy, minimizing waste and hazardous products, and calculating atom economy for various reactions.
CO3: Evaluate green solvents and alternative energy sources for reactions, such as supercritical fluids, water, ionic liquids, and microwave or ultrasound energy, and compare their environmental benefits.
CO4: Analyze the prevention of chemical accidents and the design of safer chemical processes by applying the principles of Inherent Safer Design (ISD), focusing on minimizing risks and ensuring the safety of industrial practices.
CO5: Demonstrate examples of Green Synthesis, such as the synthesis of adipic acid, catechol, ibuprofen, and other environmentally friendly processes, while focusing on reducing waste and byproducts.
CO6: Investigate real-world applications of Green Chemistry such as the use of CO2 as a solvent, the development of recyclable materials, and environmentally safe alternatives for preservatives and antifoulants, promoting sustainable chemical practices.

Course Outline

Module	Description						
Ι	Introduction to Green Chemistry						
	What is Green Chemistry? Need for Green Chemistry. Goals of Green Chemistry.						
	Limitations/ Obstacles in the pursuit of the goals of Green Chemistry.						
II	Principles of Green Chemistry and Designing a Chemical synthesis						
	Twelve principles of Green Chemistry with their explanations and examples and						
	special emphasis on the following:						
	a) Designing a Green Synthesis using these principles; Prevention of Waste/						
	byproducts;maximum incorporation of the materials used in the process into the						
	final products ,Atom Economy, calculation of atom economy of the						

 rearrangement, addition, substitution and elimination reactions. b) Prevention/ minimization of hazardous/ toxic products reducing toxicity.risk (function) hazard × exposure; waste or pollution prevention hierarchy. c) Green solvents, supercritical fluids, water as a solvent for organic reaction
 b) Prevention/ minimization of hazardous/ toxic products reducing toxicity.risk (function) hazard × exposure; waste or pollution prevention hierarchy. c) Green solvents, supercritical fluids, water as a solvent for organic reaction
(function) hazard \times exposure; waste or pollution prevention hierarchy.
a) Green solvents, supercritical fluids, water as a solvent for organic reaction
c) Green solvents- supercritical funds, water as a solvent for organic reaction
ionic liquids, fluorous biphasic solvent, PEG, solventlessprocesse
immobilized solvents and how to compare greenness of solvents.
d) Energy requirements for reactions – alternative sources of energy: use
microwavesand ultrasonic energy.
e) Prevention of chemical accidents designing greener processes, inherent saf
design, principle of ISD "What you don't have cannot harm you", green
alternative to Bhonal Gas Tragedy (safer route to carcarbaryl) and Flixiborous
accident (safer route to cyclobexanol) subdivision of ISD minimization
simplification substitution moderation and limitation
f) Strengthening/ development of analytical techniques to prevent and minimi
the generation of hazardous substances in chemical processes
III Examples of Crean Synthesis and some real world assos
a) Crean Synthesis of the following commounds: adinic acid, estable disediu
a) Oreen Synthesis of the following compounds: adapte acid, catechol, disodid
h) Mianavara assisted respectives in water Hafmann Elimination method houses
b) Microwave assisted reactions in water. Hormann Elimination, methyl belizoa
to benzoicacid, oxidation of toluene and alconois; incrowave assisted reactio
in organic solvents Diels-Alder reaction and Decarboxylation reaction.
c) Ultrasound assisted reactions: sonochemical Simmons-Smith Reaction
(Ultrasonicalternative to lodine).
d) A green synthesis of ibuprofen which creates less waste and fewer byproduc
(Atom economy).
e) Surfactants for Carbon Dioxide – replacing smog producing and ozor
depleting solvents with CO_2 for precision cleaning and dry cleaning
garments.
f) Environmentally safe antifoulant.
g) CO ₂ as an environmentally friendly blowing agent for the polystyrene foa
sheet packaging market.
h) Using a catalyst to improve the delignifying (bleaching) activity of hydrogenetic hydragenetic hydrogenetic hydrogenetic hydrogeneti
peroxide.
i) A new generation of environmentally advanced preservative: getting the
chromium and arsenic out of pressure treated wood.
j) Rightfit pigment: synthetic azopigments to replace toxic organic and inorgan
pigments.
k) Development of a fully recyclable carpet: cradle to cradle carpeting.

Evaluation:

Mode of Evaluation	Theory + Practical				
Weightage	Comprehensive and Continuous	End Semester Examination			
	50%	50%			

Reference books:

- 1. Manahan S.E. (2005) Environmental Chemistry, CRC Press.
- 2. Miller, G.T. (2006) Environmental Science 11th edition. Brooks/Cole.
- 3. Mishra, A. (2005) Environmental Studies. Selective and Scientific Books, New.
- 4. Ahluwalia, V.K. &Kidwai, M.R.*New Trends in Green Chemistry*, AnamalayaPublishers (2005).
- 5. Anastas, P.T. & Warner, J.K.: *Green Chemistry Theory and Practical*, OxfordUniversity Press (1998).
- 6. Matlack, A.S. Introduction to Green Chemistry, Marcel Dekker (2001).
- 7. Cann, M.C. &Connely, M.E. *Real-World cases in Green Chemistry*, AmericanChemical Society, Washington (2000).
- 8. Ryan, M.A. & Tinnesand, M. Introduction to Green Chemistry, American ChemicalSociety, Washington (2002).

School of Basic and Applied Sciences Department of Chemistry

BSc Chemistry Batch: 2024-2028 Semester: III

S.No	Type of Course	Code	Title of the Course	Contact Hours Per Week				Remarks
				L	Τ	Р	С	
1	CC	CHM201	General Chemistry-III	3	0	1	4	CC-5
2	CC	CHM202	General Chemistry-IV	3	0	1	4	CC-6
3	MDC	CHM203		3			3	
4	VAC			2	0	0	2	
5	AEC						2	
6	SEC		Fuel Chemistry	2	0	0	2	
7	Minor						4	
Semester Credits				21				
School	School of Basic and Applied Sciences (SOBAS)							
----------------------	---							
Programme/Discipline	B.Sc. (H) Chemistry							
Batch	2024-28							
Semester	III							
Course Title	General Chemistry III							
Course Code	CHM201							
Credit	4							
Contact Hours	3-0-1							
(L-T-P)								
Course Type	Hybrid							
Course Objective	The course aims to equip students with a thorough understanding of key principles in physical and organic chemistry, focusing on transport phenomena, colloidal chemistry, redox reactions, and aromatic substitution mechanisms. Students will explore the concepts of electrolytic conduction, including Kohlrausch's law and the Debye-Hückel theory, while gaining hands-on experience in conductometric titrations and the determination of transport numbers. The curriculum will also cover the characteristics and applications of colloids, as well as the fundamental aspects of redox chemistry, including standard potentials and titration techniques. Additionally, students will delve into electrophilic and nucleophilic substitution reactions, enhancing their knowledge of reaction mechanisms and kinetics. Practical laboratory sessions will reinforce theoretical concepts through the synthesis and characterization of organic compounds, including various derivatization techniques and redox titrations. Ultimately, students will develop a comprehensive skill set applicable to advanced studies in chemistry and related disciplines.							
Course Outcome (CO)	After completion of this course, students will be able to: CO1: Analyze the concepts of electrolyte conduction, ionization constants, and conductometric titration methods, and apply them to solve problems related to electrolytic behavior in solution.							

CO2: Evaluate the properties and behavior of colloids, including electrokinetic phenomena and micelles, and explain their applications in various scientific and industrial contexts.
CO3: Interpret redox reactions using ion-electron methods, standard redox potentials, and Latimer and Frost diagrams, and apply these concepts to assess electrochemical cells and redox titration systems.
CO4: Investigate the mechanisms and reactivity of electrophilic and nucleophilic aromatic substitution reactions, and predict the outcome of various organic synthesis reactions involving aromatic compounds.
CO5: Synthesize and characterize organic compounds through derivatization reactions, and apply purification techniques, such as crystallization, to obtain pure products and determine their melting points.
CO6: Perform redox titrations to estimate metal ions, such as Fe(II), Fe(III), and Ca(II), in mixtures using permanganometric and dichromatometric methods, and analyze the results to determine their concentrations.

Module	Description
Ι	Transport Phenomena- Concept of electrolyte, electrolytic conduction: Electronic
	versus electrolytic conduction. Cell constant; specific, equivalent and molar
	conductance. Kohlrausch's law, equivalent conductance at infinite dilution. Debye -
	Huckel theory of Ion atmosphere, asymmetric effect, relaxation effect and
	electrophoretic effect. Ostwald dilution law and determination of ionization constants
	for weak electrolytes from conductance measurements. Conductometric titration;
	transport number, Hittorf's rule, determination of transport number by the moving
	boundary method.
II	Colloids- Lyophobic and lyophilic sols, Schultz-Hardy rule, electrokinetic
	phenomenon. Surfactants and micelles and reverse micelles: applications
III	Chemistry of redox reactions- Ion electron method and elementary idea on standard
	redox potentials with sign conventions. Concept of electrochemical cells and different
	types of electrodes, standard redox potentials, Concept of formal potential and
	influence of different factors on formal potential. Latimer and Frost diagrams.
	Feasibility of redox titration and the significance of redox potential at the equivalence

	point, Use of redox indicators.
IV	Electrophilic and nucleophilic aromatic substitution: a) Electrophilic substitutiion
	reaction: Mechanisms, kinetics, reactivity, effect of substitution on arenes Reactivity
	and ortho-para ratio for arenes, different reactions (chloromethylation, Gatterman-
	Koch, Gatterman, Hoesch, Vilsmeier-Haack reaction, Reimer-Tiemann, Kolbe-
	Schmidt), diazonium salt, b) nucleophilic substitution reactions: mechanisms, kinetics,
	reactivity, benzyne.
V	Lab-
	A. Derivatization of organic compounds:
	1. Nitration of aromatic compounds (methyl salisylate, phenol, nitrobenzene etc.),
	2. Hydrolysis of amides (benzamide) and esters (methyl or ethyl benzoate derivatives)
	3. Acetylation of aromatic alcohols (phenol, β -naphthol etc.) / aromatic amines (aniline derivatives),
	4. Benzoylation of aromatic alcohols (phenol, β -naphthol etc.)/ aromatic amines (aniline derivatives),
	5. Iodoform synthesis from acetone and ethanol.
	B. Purification of the crude product by crystallization method and melting Point determination of the purified product.
	C. Redox titration:
	1. Estimation of Fe(II) present in Mohr's salt by permanganometric and dichromatometric titration.
	2. Estimation of Fe(III) present in a sample by permanganometric and dichromatometric titration.
	3. Estimation of Fe(II) and Fe(III) in a given mixture by permanganometric and dichromatometric titration
	 Estimation of Fe(III) and Ca(II) in a given mixture by permanganometric method.

Mode of Evaluation	Theory	
Weightage	Comprehensive and Continuous Assessment	End Semester Examination

50% 50%

- 11. Huheey, Keiter and Keiter, Principles of Inorganic Chemistry,
- 12. R. Sarkar, Vol. 1 Inorganic Chemistry,
- 13. Concise Inorganic Chemistry by J. D. Lee,
- 14. Finar, I. L. Organic Chemistry (Volume 1), Dorling Kindersley (India) Pvt. Ltd.(Pearson Education),
- 15. Sykes, P. A Guidebook to Mechanism in Organic Chemistry, Orient Longman, New Delhi (1988),
- 16. Clayden, J.; Greeves, N.; Warren, S.; Wothers, P.; Organic Chemistry, Oxford University Press,
- 17. Atkins, P. W. & Paula, J. de Atkin's Physical Chemistry 10th Ed., Oxford University Press (2014),
- 18. P.C. Rakshit, Physical Chemistry 7th Edition (2004),
- 19. Chatterjee, H. Physical Chemistry, Vol-1, Edition, Platinum publishers,
- 20. Das, S.C. Advanced Practical Chemistry, Sixth edition.
- 21. Mukherjee, G.N. University handbook of undergraduate chemistry experiments.
- 22. Finar, I. L. Organic Chemistry (Volume 1), Dorling Kindersley (India) Pvt. Ltd.(Pearson Education),
- 23. Sykes, P. A Guidebook to Mechanism in Organic Chemistry, Orient Longman, New Delhi (1988),
- 24. Clayden, J.; Greeves, N.; Warren, S.; Wothers, P.; Organic Chemistry, Oxford University Press,
- 25. Atkins, P. W. & Paula, J. de Atkin's Physical Chemistry 10th Ed., Oxford UniversityPress (2014),
- 26. P.C. Rakshit, Physical Chemistry 7th Edition (2004),
- 27. Chatterjee, H. Physical Chemistry, Vol-1, Edition, Platinum publishers,
- 28. Das, S.C. Advanced Practical Chemistry, Sixth edition.

School	School of Basic and Applied Sciences (SOBAS)
Programme/Discipline	B.Sc. (H) Chemistry
Batch	2024-28
Semester	III
Course Title	General Chemistry IV
Course Code	CHM202
Credit	4
Contact Hours (L-T-P)	3-0-1
Course Type	Hybrid
Course Objective	The course aims to provide students with a comprehensive understanding of fundamental concepts in chemical equilibrium, coordination chemistry, noble gases, and the chemistry of alcohols and nitrogen compounds. Students will explore the criteria for spontaneity and equilibrium, including the applications of the equilibrium constant and Gibbs free energy, as well as Le Chatelier's principle and its implications for chemical systems. The course will introduce coordination compounds through Werner's theory and discuss ligand types, isomerism, and the chelate effect. In addition, students will investigate the properties and bonding of noble gases and examine the classification, nomenclature, and reactions of alcohols and nitrogen compounds, including amines and aromatic nitro compounds. Practical laboratory sessions will enhance theoretical knowledge through hands-on experiments, such as determining pH, solubility products, and titrations, fostering essential analytical skills in quantitative chemistry. Ultimately, this course will equip students with the necessary knowledge and skills to excel in advanced chemistry studies and applications.
Course Outcome (CO)	After completion of this course, students will be able to: CO1: Analyze the principles of chemical and ionic equilibrium, including the application of Le Chatelier's principle, Nernst's distribution law, and solubility equilibria, to solve problems related to spontaneity, pH, and buffer solutions. CO2: Explain the theory, types of ligands, and isomerism in

	coordination compounds, and apply Werner's theory and the
	chelate effect to understand the properties and applications of
	coordination complexes.
	CO3: Evaluate the preparation, properties, and bonding of noble
	gases and their compounds, such as XeF2, XeF4, and XeO2F2.
	and describe the nature of their chemical bonding.
	CO4. Investigate the synthesis reactions and mechanisms of
	cor, investigate the synthesis, reactions, and meenanishis of
	alcohols, including monorryunc, viennai grycols, and unryunc
	alcohols, and apply these concepts to their reactivity in organic
	synthesis.
	CO5: Synthesize and identify nitrogen-containing compounds
	such as amines, diazonium salts, and nitriles, and apply techniques
	like E. Clarke reaction and enamines in organic chemistry.
	CO6: Perform laboratory experiments to determine pH, solubility
	products, partition coefficients, and equilibrium constants, and
	apply titrimetric methods to estimate metal ions in mixtures using
	nermanganometric dichromatometric and iodometric titrations
	permangatometric, demontatometric, and fodometric fittations.
1	

Module	Description
Ι	Chemical equilibrium & Ionic Equilibrium – Criteria for spontaneity and
	equilibrium. Equilibrium constant and standard Gibbs free energy change; definition of
	K _p , K _c , K _x Van't Hoff's reaction isobar and isochore. Le Chatelier principle and its
	application, Nernst's distribution law; Application. Concept of pH, Acid and base
	hydrolysis. Hydrolysis of salts, Buffer solution. Acid-base indicators, titration curve.
	Solubility equilibria and influence of common and indifferent ions there on.
II	Introduction to Coordination Compounds- Werner's theory and applications, types
	of ligands, chelate effect and macrocyclic effect, IUPAC nomenclature of coordination
	complexes and Isomerism.
III	Noble gases- Preparation, properties and nature of bonding in XeF ₂ , XeF ₄ , XeF ₆ ,
	$XeOF_4$ and XeO_2F_2 .
IV	Chemistry of alcohols- Classification, nomenclature, monohydric alcohols-
	nomenclature, synthesis, chemical reaction of vicinal glycols, oxidation, oxidative
	cleavage, trihydric alcohols: nomenclature and synthesis, glycerols: reactivity and
	mechanism.
V	Nitrogen compounds- amines: preparation, separation and identification, E. Clarke
	reaction, enamines, diazomethane, diazoacetic ester, aromatic nitro compounds,

	aromatic diazonium salts, nitrile and isonitrile.etc.) and cyclic molecules (3, 4, 5, 6-
	membered rings; mono- and di-substituted cyclohexane).
VI	Lab
	A. Physico-chemical experiments:
	1. Find out the pH of an unknown solution by colorimetric method.
	2. Determination of solubility product for sparingly soluble salt.
	3. Determination of partition coefficient of iodine between water and organic solvent.
	4. Equilibrium Constant determination of $KI + I_2 \rightleftharpoons KI_3$ system.
	B. Permangometric, Dichromatometric and Iodometric titration:
	1. Estimation of Fe(III) and Mn(II) in a mixture using standardized KMnO4solution
	2. Estimation of Fe(III) and Cr(III) in a mixture using K ₂ Cr ₂ O ₇ .
	3. Standardization of sodium thiosulfate solution
	4. Estimation of Cu(II) by standardized sodium thiosulphate solution.

Mode of Evaluation	Theory	
Weightage	Comprehensive and Continuous Assessment	End Semester Examination
	<mark>50%</mark>	<mark>50%</mark>

- 1. Huheey, Keiter and Keiter, Principles of Inorganic Chemistry,
- 2. R. Sarkar, Vol. 1 Inorganic Chemistry,
- 3. Concise Inorganic Chemistry by J. D. Lee,
- 4. Finar, I. L. Organic Chemistry (Volume 1), Dorling Kindersley (India) Pvt. Ltd.(Pearson Education),
- 5. Clayden, J.; Greeves, N.; Warren, S.; Wothers, P.; Organic Chemistry, Oxford University Press,
- Atkins, P. W. & Paula, J. de Atkin's Physical Chemistry 10th Ed., Oxford UniversityPress (2014),
- 7. P.C. Rakshit, Physical Chemistry 7th Edition (2004),

- 8. Chatterjee, H. Physical Chemistry, Vol-1, Edition, Platinum publishers,
- 9. Das, S.C. Advanced Practical Chemistry, Sixth edition.
- 10. Mukherjee, G.N. University handbook of undergraduate chemistry experiments.

School	School of Basic and Applied Sciences (SOBAS)
Programme/Discipline	B.Sc. (H) Chemistry
Batch	2024-28
Semester	III
Course Title	Fuel Chemistry
Course Code	SEC107
Credit	2
Contact Hours (L-T-P)	1-0-1
Course Type	Hybrid
Course Objective	The course aims to provide students with a comprehensive understanding of energy sources, focusing on both renewable and non-renewable fuels. Students will explore the classification of fuels and their calorific values, with a particular emphasis on coal, its composition, and its diverse applications in various industries, including its carbonization processes and gasification techniques. The curriculum will also cover the petroleum and petrochemical industry, detailing the composition and refining of crude petroleum, as well as the production and applications of various petroleum products. Additionally, students will study key petrochemicals, including vinyl acetate and propylene oxide, and examine the classification and properties of lubricants, including their viscosity and performance characteristics. Through this course, students will gain essential knowledge about the energy landscape and the chemical processes involved in fuel production and utilization, preparing them for advanced studies and careers in energy and chemical industries.
Course Outcome (CO)	After completion of this course, students will be able to: CO1: Classify energy sources as renewable and non-renewable, and evaluate the calorific values of different fuels for various applications.
	CO2: Analyze the composition, uses, and carbonization processes of coal, and explain the techniques of coal gasification and

liquefaction, including their applications in energy production.
CO3: Examine the composition and refining processes of crude petroleum, and evaluate the production and application of petroleum products, including synthetic and non-petroleum fuels.
CO4: Identify and describe key petrochemicals such as vinyl acetate, propylene oxide, and toluene, and explain their industrial uses and derivatives.
CO5: Classify different types of lubricants, and analyze their properties such as viscosity index, cloud point, and pour point, along with methods for their determination.
CO6: Evaluate the role of lubricants in various industries, and apply knowledge of synthetic and natural lubricants in practical applications, considering factors like conductivity and lubrication efficiency.

Module	Description
Ι	Review of energy sources (renewable and non-renewable): Classification of fuels
	and their calorific values.
	Coal: Uses of coal (fuel and nonfuel) in various industries, its composition,
	carbonization of coal. Coal gas, producer gas and water gas-composition and uses.
	Coal gasification (Hydro gasification and Catalytic gasification), Coal liquefaction and
	Solvent Refining.
II	Petroleum and Petrochemical Industry: Composition of crude petroleum, Refining
	and different types of petroleum products and their applications. Fractional Distillation,
	Cracking, Reforming Petroleum and non-petroleum fuels (LPG, CNG, LNG, bio-gas,
	fuels derived from biomass), fuel from waste, synthetic fuels (gaseous and liquids),
	clean fuels.
III	Petrochemicals: Vinyl acetate, Propylene oxide, Isoprene, Butadiene, Toluene and
	Xylene its derivatives.
IV	Lubricants: Classification of lubricants, lubricating oils (conducting and non-
	conducting) Solid and semisolid lubricants, synthetic lubricants. Properties of
	lubricants (viscosity index, cloud point, pore point) and their determination.

Evaluation:

Mode of Evaluation Theory

Weightage	Comprehensive and Continuous	End Semester Examination
	Assessment	
	<mark>50%</mark>	<mark>50%</mark>

- 1. Stocchi, E. Industrial Chemistry, Vol-I, Ellis Horwood Ltd. UK (1990).
- 2. Jain, P.C. & Jain, M. Engineering Chemistry DhanpatRai& Sons, Delhi.
- 3. Sharma, B.K. & Gaur, H. Industrial Chemistry, Goel Publishing House, Meerut(1996).
- 4. Sharma, B.K. & Gaur, H. Industrial Chemistry, Goel Publishing House, Meerut(1996).

School of Basic and Applied Sciences Department of Chemistry

BSc Chemistry Batch: 2024-2028 Semester: IV

S.No	Type of	Code	Title of the Course	Co	onta	ct Hou Week	rs Per	Remarks
	Course			L	Τ	Р	С	
1	CC	CHM205	Organic Chemistry-I	3	0	1	4	CC-7
2	СС	CHM206	Physical Chemistry-I	3	0	1	4	CC-8
3	CC	CHM207	Inorganic Chemistry-I	3	0	1	4	CC-9
4	SEC		Pharmaceutical Chemistry	2	0	0	2	
5	VAC						2	
7	Minor						4	
		Semeste	r Credits				20	

School	School of Basic and Applied Sciences (SOBAS)
Programme/Discipline	B.Sc. (H) Chemistry
Batch	2024-28
Semester	IV
Course Title	Organic Chemistry I
Course Code	CHM205
Credit	4
Contact Hours (L-T-P)	3-0-1
Course Type	Hybrid
Course Objective	The course aims to provide students with a comprehensive understanding of the chemistry of carbonyl compounds, encompassing their synthesis, mechanisms, and reactivity in various chemical reactions. Students will explore characteristic reactions of carbonyl compounds, including the Cannizzaro and aldol condensations, as well as the behavior of carboxylic acids and their derivatives, focusing on their preparation, physical properties, and reaction mechanisms. The curriculum will also cover a variety of rearrangement reactions, equipping students with the ability to understand and predict reaction pathways and outcomes. Additionally, the course will introduce biomolecules, including carbohydrates, amino acids, peptides, and nucleic acids, emphasizing their synthesis, degradation, and structural properties. Through lectures and practical applications, students will develop a solid foundation in organic chemistry, enabling them to tackle more advanced topics in the field.
Course Outcome (CO)	After completion of this course, students will be able to: CO1: Synthesize and explain the reactivity and mechanisms of various carbonyl compounds, including reactions with alcohols, amines, thiols, and the Wittig reaction, and apply reduction methods like Wolff-Kishner and Clemmensen reduction. CO2: Analyze the characteristic reactions of carbonyl compounds, such as Cannizzaro, aldol condensation, and Michael addition, and apply these reactions in the synthesis of complex

organic molecules. CO3: Describe the preparation, properties, and reactions of carboxylic acids and their derivatives, and explain the mechanism of ester group hydrolysis in the context of organic synthesis. CO4: Investigate various rearrangement reactions, such as the Wagner-Meerwein, Beckmann, and Baeyer-Villiger oxidation, and apply these transformations in the synthesis of organic compounds. CO5: Analyze the structure and properties of biomolecules like carbohydrates, amino acids, peptides, proteins, and nucleic acids, and describe their synthesis and degradation processes. CO6: Perform laboratory syntheses of drug molecules, dye derivatives, and other organic compounds, applying various synthetic techniques such as azo coupling and photophysical studies, and characterize the products formed.

Module	Description		
Ι	Chemistry of carbonyl compounds: Synthesis, mechanism, reactivity, reactions with		
	alcohols, amines, thiols, HCN, bisulfate, Wittig reaction, hydride addition, Wolff-		
	Kishner reduction, Bouveault-Blanc reduction, Clemmensen reduction, reduction with		
	metal hydrides.		
II	Characteristic reactions of carbonyl compounds- Cannizzaro reaction, Tischenko		
	reaction, aldol condensation, benzoin condensation, acyloin Condensation, Mannich		
	reaction, oxidation, michael addition and robinson annulation.		
III	Carboxylic Acids and their Derivatives- Preparation, physical properties and		
	reactions of monocarboxylic acids; acid derivatives, mechanism of ester group		
	hydrolysis.		
IV	Rearrangement reactions: Wagner-Meerwein, pinacol, Dienone-phenol, Wolff,		
	benzil-benzilic acid rearrangement, Beckmann, Schmidt, Hofmann, Lossen, Curtius,		
	Baeyer-Villiger oxidation, Dakin, Fries, Claisen, dienone-phenol, Hofmann-Martius,		
	Fischer-Hepp, Bamberger, Orton, Benzidine, Radical coupling: pinacol, acyloin,		
	McMurry etc.		
V	Biomolecules: Carbohydrates, amino acids, peptides (synthesis and degradation),		
	proteins (elementary idea), nucleic acids (Basic introduction to the structure and		
	properties of DNA and RNA).		
VI	Lab-		

Drug molecules:	
•	Paracetamol from p-amino phenol,
	Aspirin synthesis from salicylic acid,
	Phenytoin from benzil and urea,
-	Hippuric acid from glycine,
-	Cholesterol benzoate from cholesterol (liquid crystal),
-	P-Methoxy benzamide (mosquito repellent) from p-methoxy
	benzyl chloride etc.
Dye derivatives:	
-	Azo dye from aniline and β -naphtol,
-	Azo dye from sulphanilic acid and β -naphtol,
-	Extended azo dye and their photophysical study etc.
Others:	
-	Benzoic acid from benzaldehyde,
-	p-Iodo nitrobenzene from p-nitro aniline,
•	Synthesis of dibenzalacetone from benzaldehyde etc.

Mode of Evaluation	Theory	
Weightage	Comprehensive and Continuous	End Semester Examination
	Assessment	
	<mark>50%</mark>	<mark>50%</mark>

- 1. Sykes, P. A Guidebook to Mechanism in Organic Chemistry, Orient Longman, New Delhi (1988).
- 2. Norman & Coxon Principles of Organic Synthesis (CRC Press)
- 3. Morrison, R. N. & Boyd, R. N. Organic Chemistry, Dorling Kindersley (India) Pvt. Ltd. (Pearson Education).
- 4. Finar, I. L. Organic Chemistry (Volume 1), Dorling Kindersley (India) Pvt. Ltd. (Pearson Education).
- 5. Clayden, J.; Greeves, N.; Warren, S.; Wothers, P.; Organic Chemistry, Oxford University Press.
- 6. March, J. Advanced Organic Chemistry.
- 7. Mann, F.G. & Saunders, B.C. Practical Organic Chemistry, Pearson Education (2009)

- 8. Das, S.C. Advanced Practical Chemistry, Sixth edition.
- 9. Mukherjee, G.N. University handbook of undergraduate chemistry experiments.

School	School of Basic and Applied Sciences (SOBAS)
Programme/Discipline	B.Sc. (H) Chemistry
Batch	2024-28
Semester	IV
Course Title	Physical Chemistry I
Course Code	CHM206
Credit	4
Contact Hours (L-T-P)	3-0-1
Course Type	Hybrid
Course Objective	This course aims to provide a comprehensive understanding of key principles in quantum mechanics, thermodynamics, and physical chemistry, with a focus on their application in real-world scenarios. Students will explore the origins and foundational concepts of quantum mechanics, including wave-particle duality and the Schrödinger equation, enabling them to analyze complex systems and evaluate expectation values. The course will also cover the phase rule and colligative properties, allowing students to derive phase diagrams and understand their significance in both theoretical and practical contexts. Additionally, the thermodynamics of electrochemical cells will be examined, including the Nernst equation and the relationship between free energy and cell potential. Through hands-on laboratory experiences, such as conductometric titrations and the study of reaction equilibria, students will develop practical skills and a deeper appreciation for the intricate behaviors of chemical systems. By integrating theoretical knowledge with experimental techniques, the course prepares students to tackle challenges in

	both academic and industrial settings.
Course Outcome (CO)	After completion of this course, students will be able to:
	CO1: Explain the origin and key principles of quantum mechanics, including wave-particle duality, the uncertainty principle, and the photoelectric effect, and apply these concepts to analyze quantum phenomena.
	CO2: Solve the time-dependent and time-independent Schr)dinger equations for various systems, interpret the wave function, and use operator algebra to evaluate expectation values and commutation relations in quantum mechanics.
	CO3: Apply the principles of quantum mechanics to solve the particle in a box problem, extending the solution to two- and three-dimensional systems, and analyze the significance of degenerate energy states.
	CO4: Derive and solve the Schrodinger equation for a simple harmonic oscillator, and connect the solutions with classical turning points and the uncertainty principle, considering the effect of anharmonicity.
	CO5: Apply the phase rule and colligative properties to analyze phase diagrams for one-, two-, and three-component systems, and explain the concepts of first-order phase transitions and liquid-vapor equilibrium.
	CO6: Perform conductometric experiments to study acid-base titrations, saponification, and equilibrium reactions, and apply the Oswald dilution law and distribution method to determine transport numbers and analyze chemical equilibria.

Module	Description
Ι	Quantum Mechanics -I
	a) Origin of quantum mechanics- Black body radiation, de Broglie hypothesis,
	wave-particle duality, Uncertainty principle. Photoelectric effect, Compton effect.
	b) Time-dependent and time -independent Schrödinger equation; probabilistic
	interpretation of the wave function, stationary state. Elementary idea of
	operator, operator algebra, eigen value equation, expectation value. Postulates

	 of quantum mechanics. Commutation relation. c) Application to Particle in a box problem- Construction of Schrödinger equation for 1 D box problem and its solution. Evaluation of expectation values of x, x², p_x, p_{x²} for 1-D box and their significance. Extension of the particle in one-dimensional box to two- and three- dimensional cases, idea of degenerate energy states. Free particle.
	 d) Simple harmonic Oscillator- Schrödinger equation, series solutions of differential equation: Hermite equation. Expressions for energy and wave functions. Connection with the uncertainty principle, classical turning points. Limitation, introduction of anharmonicity.
II	Phase Rule and colligative properties-
	 a) Definition of phase, number of components and degrees of freedom, Derivation of phase rule and its applications. One component system and its phase diagram. First order phase transition and Clapeyron equation. Clausius-Clapeyron equation: derivation and its use; liquid vapor equilibrium for two component systems.
	 b) Colligative property- Ideal solutions, ideally dilute solutions and Raoult's law, Colligative properties of solution: Lowering of vapor pressure, elevation of boiling point, depression of freezing point, osmotic pressure. Abnormal colligative properties, van't Hoff factor; biomedical application: osmosis and dialysis.
	c) Phase diagram for two and three component system- Liquid vapor equilibrium for two component systems, Fractional distillation. Phenol-water system. Three component systems, water-chloroform-acetic acid system, triangular plots.
III	Thermodynamics of electrochemical cell- Electrochemical cells: representation, EMF
	and relation of ΔG , ΔH and ΔS with EMF. Thermodynamic derivation of Nernst equation. Standard cells, different types of electrode, standard electrode potential and principle of its determination; concentration cells. Activity coefficient, Debye-Hückel model limiting law, applications. Determination of transport number by EMF method, glass electrode and determination of pH, applications of EMF measurement: potentiometric titrations: acid-base, redox and precipitation.
IV	Lab- Conductometric method
	 Conductometric titration of an acid (strong, weak/ monobasic, dibasic, and acid mixture) against strong base. Study of saponification of ester conductometrically
	3. Oswald dilution law
1	

distribution	
method:	
	(i) $I_2(aq) + I^-(aq) \rightarrow I_3^-(aq)$ (ii) $Cu^{2+(aq)} + nNH_3 \rightarrow Cu(NH_3)_n$

Mode of Evaluation	Theory		
Weightage	Comprehensive and Continuous Assessment	End Semester Examination	
	<mark>50%</mark>	<mark>50%</mark>	

- 1. Atkins, P. W. & Paula, J. de Atkin's Physical Chemistry 10th Ed., Oxford University
- 2. Ball, D. W. *Physical Chemistry* Thomson Press, India (2007).
- 3. Castellan, G. W. *Physical Chemistry* 4th Ed. Narosa (2004).
- 4. McQuarrie, D. A & Simon, J. D, Physical Chemistry: A molecular approach, University Science Books, Sausalito, California.
- 5. N. K. Bera, Physical Chemistry, 1st Edition, Techno World Pub.
- 6. Levitt, B. P. edited Findlay's Practical Physical Chemistry Longman Group Ltd.
- 7. University Hand Book of Undergraduate Chemistry Experiments, University of Calcutta.

School	School of Basic and Applied Sciences (SOBAS)
Programme/Discipline	B.Sc. (H) Chemistry
Batch	2024-28
Semester	IV
Course Title	Inorganic Chemistry I
Course Code	CHM207
Credit	4
Contact Hours (L-T-P)	3-0-1
Course Type	Hybrid
Course Objective	The objective of this course is to provide students with a comprehensive understanding of coordination chemistry, focusing on the bonding theories that underpin coordination complexes, including valence bond theory and crystal field theory. Students will explore the effects of ligand field strength and Jahn-Teller distortion, while also engaging with modified ligand field theory and its implications for ML6 and ML4 complexes. The course will delve into the electronic spectra of coordination complexes, emphasizing selection rules, L-S coupling, and Orgel diagrams for various d-block ions. Additionally, students will examine the magnetic properties of coordination complexes, assessing magnetic moments and the role of exchange interactions. A comparative analysis of d and f block elements will enhance their understanding of electronic configurations, oxidation states, and coordination chemistry across different series. Practical laboratory sessions will reinforce theoretical concepts, enabling students to conduct iodometric and complexometric titrations for estimating metal ions and analyzing water hardness, thereby integrating hands-on experience with theoretical knowledge.
Course Outcome (CO)	After completion of this course, students will be able to: CO1: Analyze the bonding in coordination complexes using valence bond theory and crystal field theory, and evaluate the effects of weak and strong field ligands, J-T distortion, and OSSE in these systems.

CO2: Apply modified ligand field theory to explain the electronic structure and behavior of ML6 and ML4 complexes, including the Nephelauxetic effect and its implications for coordination chemistry.
CO3: Interpret the electronic spectra of coordination complexes by applying selection rules, L-S coupling, hole formalism, and Orgel diagrams, and analyze charge transfer spectra for various metal ions.
CO4: Evaluate the magnetic properties of coordination complexes, including the calculation of spin-only magnetic moments, the role of orbital contributions, and the effects of spin-orbit coupling and exchange interactions.
CO5: Compare the chemistry of d-block and f-block elements in terms of electronic configuration, oxidation states, redox properties, and coordination chemistry, and analyze the spectral and magnetic properties of lanthanides and actinides.
CO6: Perform iodometric and complexometric titrations to estimate metal ions such as Zn(II), Fe(III), Cu(II), and Ca(II), and analyze the hardness of water through complexometric methods.

Module	Description		
Ι	Bonding in Coordination complexes- Valence bond theory and its limitations,		
	Concept of crystal field theory, Effect of weak and strong field ligands in crystal field		
	splitting, J-T distortion and OSSE and its application.		
II	Modified Ligand Field Theory of Coordination Complexes- MO energy diagram for		
	ML ₆ and ML ₄ complexes, Nephelauxetic effect.		
III	Electronic Spectra of Coordination Complexes- Selection rules for electronic		
	spectral transitions, L-S coupling, hole formalism principle, Orgel diagrams for $d^1 - d^9$		
	ions, Charge transfer spectra.		
IV	Magnetic property of coordination complexes- Magnetism and magnetic moments,		
	Spin only magnetic moments and their correlation with effective magnetic moments,		
	Orbital contribution towards magnetic moment and its quenching in crystal field,		
	Exchange interaction in metal complexes, Spin-orbit coupling.		
V	Chemistry of <i>d</i> and <i>f</i> block elements- General comparison of chemistry of 3d, 4d and		
	5d elements in term of electronic configuration, atomization energy, oxidation states,		

	redox properties, coordination chemistry, spectral and magnetic properties. Spectral		
	and magnetic properties of <i>f</i> -block elements and comparison between lanthanides and		
	actinides.		
VI	Unit-6: Lab Iodometric and Complexometric titration		
	1. Estimation of Zn(II) by complexometric titration.		
	2. Estimation of Fe(III) and Cu(II) in a mixture.		
	3. Estimation of Cu(II) and Zn(II) present in a mixture by iodometric titration.		
	4. Estimation of Ca(II) by EDTA complexometry.		
	5. Estimation of Ca(II) and Mg(II) in a given mixture.		
	6. Estimation of permanent and temporary hardness of water		

Mode of Evaluation	Theory		
Weightage	Comprehensive and Continuous Assessment	End Semester Examination	
	<mark>50%</mark>	<mark>50%</mark>	

- 1. Huheey, Keiter and Keiter, Principles of Inorganic Chemistry
- 2. R. Sarkar, Vol. 2 Inorganic Chemistry
- 3. Chemistry of elements by Greenwood and Earnshaw
- 4. Handbook of Practical Chemistry by Subhas C Das.

School	School of Basic and Applied Sciences (SOBAS)		
Programme/Discipline	B.Sc. (H) Chemistry		
Batch	2024-28		
Semester	IV		
Course Title	Pharmaceutical Chemistry		
Course Code	SEC108		
Credit	2		
Contact Hours1-0-1(L-T-P)1			
Course Type	Hybrid		
Course Objective	The course objective is to provide students with a comprehensive understanding of drug discovery, design, and development, emphasizing the retrosynthetic approach to synthesizing key pharmaceutical agents. Students will explore the various classes of drugs, including analgesics, antipyretics, antibiotics, and antiviral agents, gaining insights into their mechanisms of action and therapeutic applications. The course will also cover the production processes of important biopharmaceuticals through aerobic and anaerobic fermentation, focusing on the synthesis of antibiotics and essential vitamins. By integrating theoretical knowledge with practical applications, this course aims to equip students with the skills necessary to analyze and develop pharmaceutical compounds and to appreciate the role of fermentation in the biotechnology sector.		
Course Outcome (CO)	 After completion of this course, students will be able to: CO1: Explain the drug discovery, design, and development processes, and apply the basic retrosynthetic approach to the synthesis of representative drugs from various therapeutic classes. CO2: Synthesize and evaluate the chemical structures and mechanisms of action of analgesic, antipyretic, anti-inflammatory agents, and antibiotics, including drugs like aspirin, paracetamol, ibuprofen, and chloramphenicol. CO3: Analyze the synthesis, pharmacology, and clinical 		

a n F z	applications of antibacterial, antifungal, antiviral, and central nervous system agents, including sulphonamides, acyclovir, phenobarbital, diazepam, and HIV-related drugs such as zidovudine.
	CO4: Investigate the chemical synthesis and mechanism of action of cardiovascular drugs like glyceryl trinitrate and antilaprosy drugs such as dapsone, and understand their therapeutic applications.
	CO5: Evaluate the processes and products of fermentation, ncluding the production of ethyl alcohol, citric acid, antibiotics penicillin, cephalosporin), and essential vitamins (B2, B12, C).
	CO6: Demonstrate the industrial production of amino acids, vitamins, and antibiotics through aerobic and anaerobic
fs	Termentation techniques, and assess the biotechnological significance of these products in pharmaceuticals.

Module	Description		
Ι	Drugs & Pharmaceuticals		
	Drug discovery, design and development; Basic Retrosynthetic approach. Synthesis of		
	the representative drugs of the following classes: analgesics agents, antipyretic agents,		
	anti-inflammatory agents (Aspirin, paracetamol, lbuprofen); antibiotics		
	(Chloramphenicol);		
II	Types of drugs		
	Antibacterial and antifungal agents (Sulphonamides; Sulphanethoxazol,		
	Sulphacetamide, Trimethoprim); antiviral agents (Acyclovir), Central Nervous System		
	agents (Phenobarbital, Diazepam), Cardiovascular (Glyceryltrinitrate), antilaprosy		
	(Dapsone), HIV-AIDS relateddrugs (AZT- Zidovudine), 7-Fluoroquinoline based		
	drugs, Remdesivir, Tamiflu etc.		
III	Fermentation		
	Aerobic and anaerobic fermentation. Production of (i) Ethyl alcohol and citric acid, (ii)		
	Antibiotics; Penicillin, Cephalosporin, Chloromycetinand Streptomycin, (iii) Lysine,		
	Glutamic acid, Vitamin B2, Vitamin B12 and Vitamin C.		

Evaluation:

Mode of Evaluation	Theory	
Weightage	Comprehensive and Continuous	End Semester Examination

Assessment	
50%	<mark>50%</mark>

Reference Books:

• G.L. Patrick: Introduction to Medicinal Chemistry, Oxford University Press, UK.

• Hakishan, V.K. Kapoor: *Medicinal and Pharmaceutical Chemistry*, VallabhPrakashan, Pitampura, New Delhi.

• William O. Foye, Thomas L., Lemke, David A. William: *Principles of Medicinal Chemistry*, B.I. Waverly Pvt. Ltd. New Delhi.

School of Basic and Applied Sciences Department of Chemistry

BSc Chemistry Batch: 2024-2028 Semester: V

S.No	Type of Co	Code	Code Title of the Course	Contact Hours Per Week			Remarks	
	Course			L	Т	Р	С	
1	CC	CHM301	Organic Chemistry-II	3	0	1	4	CC-10
2	CC	CHM302	Physical Chemistry-II	3	0	1	4	CC-11
3	CC	CHM303	Inorganic Chemistry-II	3	0	1	4	CC-12
4			Mathematics and	1	0	1	2	
4	SEC		Computation in Chemistry	1	0	1	2	
5	INT	CHM305	Internship	0	0	4	4	
6	Minor			3	0	1	4	
Semester Credits			22					

5.

School	School of Basic and Applied Sciences (SOBAS)
Programme/Discipline	B.Sc. (H) Chemistry
Batch	2024-28
Semester	V
Course Title	Organic Chemistry II
Course Code	CHM301
Credit	4
Contact Hours	3-0-1
(L-T-P)	
Course Type	Hybrid
Course Objective	This course aims to provide a comprehensive understanding of advanced organic synthesis techniques, focusing on carbocyclic and heterocyclic chemistry, enolate chemistry, and retrosynthetic analysis. Students will explore the thermodynamic and kinetic factors influencing carbocycle formation, the application of Baldwin's rules, and methods of synthesizing polycyclic aromatic compounds. The course also covers the synthesis and reactivity of key heterocyclic structures such as pyrrole, pyridine, and indole, as well as strategies for carbonyl chemistry and ring synthesis. Additionally, students will delve into retrosynthetic analysis, learning to apply disconnection approaches, protection- deprotection strategies, and rearrangement reactions in complex molecule synthesis. Lab sessions will emphasize practical chromatographic techniques, including thin-layer and column chromatography, alongside the use of rotary evaporators.
Course Outcome (CO)	After completion of this course, students will be able to: CO1: Analyze the thermodynamic and kinetic factors involved in the synthesis of carbocycles, applying Baldwin's rules, and understanding the reactivity of polycyclic aromatics such as naphthalene, anthracene, and phenanthrene. CO2: Evaluate the structure, aromaticity, reactivity, and synthesis methods of heterocycles like pyrrole. pyridine. indole. furan.

thiophene, and quinoline, focusing on their functional properties.
CO3: Apply enolate chemistry techniques, including alkylation,
acylation, conjugate addition, and ring synthesis strategies, for the
preparation of carbonyl and di-carbonyl derivatives.
CO4: Design and perform retrosynthetic analysis using
disconnections, synthons, and synthetic equivalents, while
applying protection-deprotection strategies and large-ring
synthesis via rearrangement reactions.
CO5: Synthesize organic compounds using the disconnection
approach to organic synthesis, incorporating functional group
interconversions and bond disconnections involving C-heteroatom
and C-C bonds.
CO6: Demonstrate the application of chromatographic techniques
(TLC, column chromatography) and rotary evaporation in organic
sample analysis and purification in the laboratory.
 acylation, conjugate addition, and ring synthesis strategies, for the preparation of carbonyl and di-carbonyl derivatives. CO4: Design and perform retrosynthetic analysis usine disconnections, synthons, and synthetic equivalents, while applying protection-deprotection strategies and large-rine synthesis via rearrangement reactions. CO5: Synthesize organic compounds using the disconnection approach to organic synthesis, incorporating functional grout interconversions and bond disconnections involving C-heteroator and C-C bonds. CO6: Demonstrate the application of chromatographic technique (TLC, column chromatography) and rotary evaporation in organic sample analysis and purification in the laboratory.

Module	Description	
Ι	Carbocycles: Thermodynamic and kinetic factors, Baldwin rules, Synthesis of	
	carbocycles through alkylation, condensation, cycloaddition, rearrangement and their	
	reactivity, synthesis of polycyclic aromatics (naphthalene, anthracene and	
	phenanthrene).	
II	Heterocycles: Classification, nomenclature, aromaticity, reactivity and synthesis	
	(Pyrrole, pyridine, indole, furan, thiophene, quinoline)	
III	Enolate chemistry: Alkylation, acylation and conjugate addition at of carbonyls, di-	
	carbonyl derivative synthesis, strategies of ring synthesis.	
IV	Retrosynthetic analysis: Disconnections, synthesis, synthetic quivalents, functional	
	group interconversion, bond disconnection (C-hetero atom and C-C), protection-	
	deprotection strategy, synthesis through rearrangement reactions, synthesis of large	
	rings (high dilution technique)	
V	Application to illustrate the disconnection approach to organic synthesis.	
VI	Lab: Chromatographic methods	
	1. Theory and application of chromatography in sample analysis (TLC, column	
	chromatography)	
	2. Theory and application of rotatory evaporator.	

Mode of Evaluation	Theory	
Weightage	Comprehensive and Continuous Assessment	End Semester Examination
	<mark>50%</mark>	<mark>50%</mark>

- 1. Joule and Mills, Heterocyclic Chemistry- 4th edition(Wiley)
- 2. Gilchrist, T.L. Heterocyclic Chemistry (Pearson),
- 3. Organic Synthesis The Disconnection Approach S. Warren,
- 4. Designing Organic Synthesis S. Warren,
- 5. Tactics of Organic Synthesis T.-L. Ho,
- 6. Das, S.C. Advanced Practical Chemistry, Sixth edition,
- 7. Mukherjee, G.N. University handbook of undergraduate chemistry experiments.

School	School of Basic and Applied Sciences (SOBAS)
Drogramma/Dissinling	B Sc. (H) Chemistry
Programme/Discipline	
Batch	2024-28
Semester	V
Course Title	Physical Chemistry-II
Course Code	CHM302
Credit	4
Contact Hours	3-0-1
(L-T-P)	
Course Type	Hybrid
Course Objective	The course provides a comprehensive understanding of fundamental principles in quantum mechanics, statistical thermodynamics, group theory, and their applications in chemical bonding and spectroscopy. Students will explore the quantum mechanical treatment of systems like the harmonic oscillator and hydrogen atom, developing familiarity with angular momentum and Schrödinger equation solutions. The course introduces covalent bonding models, contrasting molecular orbital (MO) and valence bond (VB) theories. Through statistical thermodynamics, students will learn to calculate partition functions and apply them to chemical equilibria. Group theory concepts are applied to molecular symmetry, spectroscopy, and bonding analysis. Lab work focuses on titrations to reinforce theoretical concepts through practical experimentation.
Course Outcome (CO)	After completion of this course, students will be able to:

CO1: Apply the quantum mechanical approach to the simple
harmonic oscillator by solving Schrodinger's equation, analyzing
the series solutions of the Hermite equation, and understanding the energy and wave functions in relation to the uncertainty principle and classical turning points.
CO2: Explain the principles of angular momentum and the
hydrogen atom using commutation relations, ladder operators, and
spherical polar coordinates, and analyze the concept of quantum numbers and the radial and orbital distributions of the hydrogen atom.
CO3: Compare and contrast covalent bonding theories such as the
Born-Oppenheimer approximation, LCAO-MO, and VB methods,
and evaluate their application and limitations in the context of
diatomic molecules, particularly H ₂ .
CO4: Derive the Maxwell-Boltzmann distribution and apply the
concepts of partition function and entropy to calculate
thermodynamic properties and equilibrium constants for various molecular systems, including chemical equilibria and ionization
processes.
CO5: Apply statistical thermodynamics to calculate the rotational, translational, vibrational, and electronic partition functions for
diatomic molecules, and evaluate their relevance to chemical and ionization equilibria, the equipartition principle, and quantum
statistics.
CO6: Utilize group theory to analyze molecular symmetry. apply
character tables, and interpret selection rules in molecular
spectroscopy, normal modes, IR and Raman activities, crystal
field theory, and vibronic coupling for various molecular systems.

Module	Description
Ι	Quantum mechanical approach to Simple harmonic Oscillator- Schrödinger
	equation, series solutions of differential equation: Hermite equation. Expressions for energy and wave functions. Connection with the uncertainty principle, classical turning points. Limitation, introduction of anharmonicity.
II	Angular Momentum and H-atom- Commutation rules, quantization of square of total

	angular momentum and z-component; Ladder operator method to solve Schrödinger
	equation; Rigid rotator model of rotation. Hydrogen atom: Transforming the
	Schrödinger equation to spherical polar coordinates. Separation of variables; Spherical
	harmonics. The idea of the quantum numbers, degenerate states, orbital, radial density
	distributions.
III	Covalent bonding- Born-Oppenheimer approximation; LCAO-MO treatment of H_2^+ ;
	Bonding and antibonding orbitals; Qualitative extension to H ₂ ; Comparison of LCAO
	MO and VB treatments of H ₂ and their limitations; Covalent bonding, valence bond
	and molecular orbital approaches.
IV	Introduction to Statistical Thermodynamics- Concept of probability. Microscopic
	and microstates, thermodynamic probability. Entropy Derivation of Maxwell-
	Boltzmann distribution. Concept of partition function (PF). Relevance to
	thermodynamics.
V	Application of Statistical Thermodynamics- Rotational, Translational, Vibrational
	and Electronic PF for diatomic molecules, Calculation of equilibrium constants in term
	of partition function. Application to chemical/ionization equilibrium, Equipartition
	principle. Gibbs paradox, and quantum statistics. Third law and residual entropy.
VI	Introduction to Group Theory- Introduction to group theory, symmetry elements,
	point group. Reducible and irreducible representations of point group. Classes and
	character, statement of grand orthogonality theorem, character tables, concept of
	character projection operator.
VII	Application of Group Theory- Selection rules in molecular spectroscopy. Normal
	modes, their symmetry properties, IR and Raman activity. Electronic spectroscopy.
	Crystal field theory. SALC – Hückel theory, Hybridization, Vibronic coupling.
VIII	Lab- pH-metric and potentiometric titration:
	1. Study the effect on pH of addition of HCl/NaOH to solutions of acetic acid,
	sodium acetate and their mixtures.
	2. pH metric titration of i) strong acid vs. strong base ii) weak acid vs. strong base
	3. Potentiometric titration of Mohr's salt solution against standard $K_2Cr_2O_7$
	solution.
	4. Determination of K_{sp} for AgCl by potentiometric titration of AgNO ₃ solution
	against standard KCI solution.

Mode of Evaluation	Theory	
Weightage	Comprehensive and Continuous Assessment	End Semester Examination
	<mark>50%</mark>	<mark>50%</mark>

- 1. Atkins, P. W. & Paula, J. de Atkin's Physical Chemistry 10th Ed., Oxford University
- 2. Ball, D. W. *Physical Chemistry* Thomson Press, India (2007).
- 3. Castellan, G. W. *Physical Chemistry* 4th Ed. Narosa (2004).
- 4. McQuarrie, D. A & Simon, J. D, Physical Chemistry: A molecular approach, University Science Books, Sausalito, California.
- 5. N. K. Bera, Physical Chemistry, 1st Edition, Techno World Pub.
- 6. Levitt, B. P. edited Findlay's Practical Physical Chemistry Longman Group Ltd.
- 7. University Hand Book of Undergraduate Chemistry Experiments, University of Calcutta.

School	School of Basic and Applied Sciences (SOBAS)		
Programme/Discipline	B.Sc. (H) Chemistry		
Batch	2024-28		
Semester	V		
Course Title	Inorganic Chemistry II		
Course Code	CHM303		
Credit	4		
Contact Hours	3-0-1		
(L-T-P)			
Course Type	Hybrid		
Course Objective	The course offers an in-depth exploration of the role of metal ions		
	in biological systems, focusing on their involvement in essential		
	processes such as ion transport, oxygen transport, and enzymatic		
	functions. Students will study the mechanisms of metal-containing		
	enzymes and proteins, such as hemoglobin and cytochromes, and		
	their significance in biological pathways, including photosynthesis		
	and nitrogen fixation. The course also covers the toxicity of metal		
	ions and therapeutic applications like chelation and MRI contrast		
	agents. In addition, it addresses analytical techniques such as		
	absorption spectroscopy and chromatography for the quantitative		
	analysis of metal ions. Laboratory work emphasizes inorganic		
	synthesis and characterization of metal complexes, providing		
	hands-on experience to complement theoretical knowledge.		
Course Outcome (CO)	After completion of this course, students will be able to:		
	CO1: Understand the role of metal ions in biological systems.		
	including their functions in processes such as oxygen transport.		
	electron transport, and nitrogen fixation.		
	CO2: Analyze the function and mechanisms of metal-containing		
	enzymes like carbonic anhydrase, catalase, and peroxidase in		
	biological systems.		
	CO3: Evaluate the toxicity of metal ions and apply chelation		

Module	Description			
Ι	Roles of metal ions in biological systems- Basic chemical reactions in biological			
	system and roles of metal ions, Na ⁺ -K ⁺ ion pump and ionophores.			
II	Oxygen transport and electron transport protein- Biological function			
	haemoglobin, myoglobin, hemocyanin and hemerythrin. Cytochromes and ferredoxi			
	Chlorophyll: PS-I and PS-II, Z-scheme of electron transport, Cytochrome C oxida			
	and its function in mammalian respiratory chain. Biological nitrogen fixation b			
	Nitrogenase.			
III	Functions of Metal Enzymes- Metal containing enzymes (carbonic anhydrase,			
	carboxypeptidase, catalase, peroxidase) and their roles in biological system			
IV	Toxicity of metal ions- Toxicity of metal ions, Chelation therapy and its applic			
	use of Gd-complex as MRI contrast reagent, uses of metal complexes as various drugs			
	(Pt and Au complexes as drugs)			
V	Errors, accuracy and precision- Errors, accuracy and precision, methods of the			
	expression and normal law of distribution if indeterminate errors.			
VI	Absorption Spectroscopy- Chemical interferences and sources of chemical			
	interferences and their method of removal. Techniques for quantitative estimation of			
	trace level of metal ions from different samples.			
VII	Chromatographic techniques- Classification, principle and efficiency of different			
	chromatographic techniques, Qualitative and quantitative aspects of chromatographic			
	methods.			

VIII	Lab-Inorganic synthesis and characterizationInorganic Preparations:			
	5. Tetraamminecopper (II) sulphate, [Cu(NH ₃) ₄]SO ₄ .H ₂ O			
	6. <i>Cis</i> and <i>trans</i> $K[Cr(C_2O_4)_2$. $(H_2O)_2]$ Potassium dioxalatodiaquachromate (III)			
	7. Tetraamminecarbonatocobalt (III) ion			
	8. Potassium tris(oxalate) ferrate(III) and its photochemistry			
	9. Synthesis of porphyrin and complexation with Zn metal.			
	10. Synthesis of Schiff bases and its complexation.			
	11. Determination of K _{sp} for AgCl by potentiometric titration of AgNO ₃ solution			
	against standard KCl solution.			

Mode of Evaluation	Theory		
Weightage	Comprehensive and Continuous Assessment	End Semester Examination	
	50%	<mark>50%</mark>	

- 1. Bioinorganic Chemistry by G. N. Mukherjee and A. Das
- 2. Bioinorganic Chemistry by Stephen J Lippard
- 3. Bioinorganic Chemistry by Asim K Das
- 4. Analytical Chemistry by Daniel C Harris
- 5. Analytical Chemistry by G. D. Christian
- 6. Analytical Chemistry by Skoog
| School | School of Basic and Applied Sciences (SOBAS) | | | |
|----------------------|--|--|--|--|
| Programme/Discipline | B.Sc. (H) Chemistry | | | |
| Batch | 2024-28 | | | |
| Semester | V | | | |
| Course Title | Mathematics and Computation in Chemistry | | | |
| Course Code | SEC | | | |
| Credit | 2 | | | |
| Contact Hours | 1-0-1 | | | |
| (L-T-P) | | | | |
| Course Type | Theory | | | |
| Course Objective | The course provides a foundational understanding of key
mathematical concepts and their applications in scientific analysis.
Students will explore essential topics such as functions, partial
differentiation, extremum principles, and series expansions like
Taylor and Fourier series. The course covers vector spaces and
matrix theory for structural determination, as well as probability,
statistics, and error analysis techniques to evaluate data reliability.
Additionally, students will gain proficiency in numerical methods,
including techniques for solving equations, differentiation,
integration, and Monte Carlo methods, while learning to apply
search algorithms for complex problem-solving scenarios. | | | |
| Course Outcome (CO) | After completion of this course, students will be able to:
CO1: Apply programming concepts in languages such as
FORTRAN, C++, and Python to translate formulas, implement
decision-making statements, loops, arrays, and subroutines for
problem-solving in chemistry.
CO2: Demonstrate understanding of basic mathematical principles
relevant to chemistry, including partial differentiation, extremum
principles, and power series, as well as their applications in
chemical calculations.
CO3: Analyze vectors, matrices, and linear vector spaces, and use
these mathematical tools for solving chemical problems involving
linear systems and determinants.
CO4: Solve problems in probability statistics, including the
application of probability distribution functions, variance, | | | |

standard deviation, and error analysis in chemical data
interpretation.
CO5: Implement numerical analysis techniques such as root-
finding, numerical differentiation and integration, and solving
simultaneous equations, for practical applications in chemistry and
chemical engineering.
CO6: Develop solutions for differential and partial differential
equations using appropriate numerical methods to model and
analyze chemical systems and processes.

Module	Description
Ι	Programming Languages (FORTRAN/C++, Python)
	Syntax for formula translation, Decision making statement, loop, array, subroutine.
II	Basic Mathematics for Chemistry
	Numbers, functions, partial differentiation, extremum principles, constrained extremization,
	Power series: Convergence and divergence, Taylor series and Fourier series. Vectors and linear
	vector space: matrices and determinant. Probability statistics: Probability distribution function,
	variance, standard deviation, error analysis.
III	Numerical Analysis:
	Numerical techniques for roots of equations, numerical differentiation, numerical integration,
	simultaneous equations, interpolation, extrapolation, differential equation, partial differential
	equation.

Evaluation:

Mode of Evaluation	Theory		
Weightage	Comprehensive and Continuous Assessment	End Semester Examination	
	<mark>50%</mark>	<mark>50%</mark>	

Reference books:

- 1. Modern Fortran in Practice, Arjen Markus, Cambridge Univrsity Press (2012).
- 2. Numerical Recipe in Fortran77, The art of scientific computing. W. H. Press, S. A. Teukolsky, W. T. Vetterling, B. P. Flannery, 2nd Edition, Cambridge Univrsity Press.
- 3. Mathematics for Chemists, N. K. Bera, S. Ghosh, P. Ghosh. TechnoWorld.

School	School of Basic and Applied Sciences (SOBAS)			
Programme/Discipline	B.Sc. (H) Chemistry			
Batch	2024-28			
Semester	V			
Course Title	Internship			
Course Code	CHM305			
Credit	4			
Contact Hours	0-0-4			
(L-T-P)				
Course Type	Practical			
Course Objective	This course aims to provide students with hands-on experience in applying chemical knowledge and laboratory techniques in a real- world setting. Through direct engagement with industry or research environments, students will enhance their practical skills, including experimental design, data analysis, and problem-solving in chemical processes. The course also emphasizes the development of professional skills such as teamwork, communication, and safety practices. By the end of the internship, students will have gained valuable insights into the application of chemistry in professional contexts, preparing them for future careers in research, industry, or advanced studies.			
Course Outcome (CO)	After completion of this course, students will be able to: CO1: Apply theoretical knowledge gained in the classroom to real-world problems in a professional setting. CO2: Analyze industry practices and compare them with academic learning to identify areas for improvement. CO3: Demonstrate effective communication skills through presentations, reports, and discussions in a professional environment. CO4: Evaluate the ethical, social, and environmental implications of the projects undertaken during the internship. CO5: Synthesize information from various sources to solve complex problems encountered during the internship. CO6: Reflect on personal and professional development			

throughout the internship and set goals for future career growth.

Mode of Evaluation	Theory			
Weightage	Comprehensive and Continuous Assessment	End Semester Examination		
	<mark>50%</mark>	<mark>50%</mark>		

School of Basic and Applied Sciences Department of Chemistry

BSc Chemistry Batch: 2024-2028 Semester: VI

S.No	Type of	Code	Title of the Course	C	onta	ict Hou Week	rs Per	Remarks
	Course			L	Т	Р	C	
32	СС	CHM306	Spectroscopy	3	1	0	4	CC-13
33	CC	CHM307	Organometallics and	2	1	0	4	
			reaction kinetics	3	1	0	4	CC-14
34	CC	CHM308/	Advanced special	3	0	1	4	
		CHM309/	chemistry-1					
		CHM310	1. Solid state chemistry					
			2. Materials of Industrial					
			Importance					CC-15
35	SEC		AI in Chemistry	2	0	0	2	
36	Minor			3	1	0	4	
37	Project	CHM312	Project	0	0	4	4	
Semester Credits			20					

School	School of Basic and Applied Sciences (SOBAS)			
Programme/Discipline	B.Sc. (H) Chemistry			
Batch	2024-28			
Semester	VI			
Course Title	Spectroscopy			
Course Code	CHM306			
Credit	4			
Contact Hours	3-0-1			
(L-T-P)				
Course Type	Hybrid			
Course Objective	This course aims to develop a comprehensive understanding of light-matter interactions, including the fundamental principles of spectral line formation and their characteristics. Students will gain theoretical skills in rotational and vibrational spectroscopy, enabling them to analyze molecular structures and dynamics, including bond length determination and isotopic effects. Students will also learn the principles governing electronic transitions, including the Franck-Condon principle, photophysical processes, and the Jablonski diagram, to analyze absorption and emission spectra. Students will be introduced to the fundamentals of laser action, including characteristics, types, and applications, as well as advanced concepts like Q-switching and harmonic generation. Introduction to group theory will help students to develop the concepts of symmetry, point groups, and their applications in spectroscopy to facilitate a deeper understanding of molecular vibrations and electronic transitions. Finally, student will be able to develop hands-on experience in conducting experiments, including verification of Lambert-Beer's law, UV-Vis spectrophotometry, and fluorescence studies, to reinforce theoretical knowledge.			

Course Outcome (CO)	After completion of this course, students will be able to:
Course Outcome (CO)	After completion of this course, students will be able to.
	CO1: Understand the principles of molecular spectroscopy,
	including light-matter interaction, rotational and vibrational
	spectroscopy, and the impact of isotopic substitution and
	anharmonicity on spectral features.
	CO2: Analyze the characteristics and conditions of Raman
	activity, including the rotational and vibrational Raman spectra,
	and apply the rule of mutual exclusion to molecular systems.
	CO3: Apply the Franck-Condon principle and photophysical
	processes to understand absorption emission spectra and the laws
	of photochemistry including quantum yield and fluoressence
	of photochemistry, including quantum yield and hubrescence
	quenching.
	CO4: Investigate the principles of laser action, laser
	characteristics, and various types of lasers, including pulsed
	lasers, Q-switching, and nonlinear effects, in both theoretical and
	practical contexts.
	CO5: Examine the fundamentals of group theory, including
	symmetry elements, point groups, and irreducible representations,
	and apply them to molecular spectroscopy, crystal field theory,
	and molecular orbital theory.
	CO6: Conduct laboratory experiments to verify the Lambert-
	Beer law study absorbance spectra using UV-Vis
	spectrophotometry and measure emission spectra and
	fluorescence quenching using fluorimetry
	nuorescence quenching using nuorimeu y.

Module	Description
Ι	Molecular Spectroscopy: Light matter interaction. Characteristic features of spectral
	lines: intensity, broadening Rotational spectroscopy of diatom: rigid rotor model,
	selection rules, characteristic features of spectral lines (spacing and intensity);
	determination of bond length, effect of isotopic. Substitution Concept of non-rigid
	rotor. Vibrational spectroscopy- SHO approximation. selection rules, spectral analysis,
	fundamental line, overtones, hot bands; anharmonicity. Raman effect- Characteristic
	features, and conditions of Raman activity. Rotational and vibrational Raman spectra,

	the rule of mutual exclusion with examples.
II	Electronic Spectroscopy: The Franck Condon principle, Photophysical processes,
	Jablonski diagram. Absorption and emission spectra, Beer-Lambert law. Difference
	between thermal and photochemical processes, photochemical reaction. Laws of
	photochemistry: Grotthuss - Draper law, Stark - Einstein law, Quantum yield.
	Fluorescence Quenching (static and Dynamics), Fluorescence lifetime measurement.
III	Laser: Principles of laser action, laser characteristics, pulsed lasers, laser cavity modes,
	Q-switching, mode locking, non-linear effects, harmonic generation, examples of
	lasers: He-Ne, Nd-YAG, titanium-sapphire, dye lasers.
IV	Group Theory and application- Introduction to group theory, symmetry elements,
	point group. Reducible and irreducible representations of point group. Classes and
	character, statement of grand orthogonality theorem, character tables, concept of
	character projection operator. Selection rules in molecular spectroscopy. Normal
	modes, their symmetry properties, IR and Raman activity. Electronic spectroscopy.
	Crystal field theory. SALC - Hückel theory (butadiene, benzene, naphthalene),
	Hybridization, Vibronic coupling.
V	Lab
	i)Verification of Lambert-Beer's law
	ii) Absorbance spectrum study by UV-Vis spectrophotometer.
	iii) Emission spectrum study by Fluorimeter, Fluorescence quenching.

Mode of Evaluation	Theory	
Weightage	Comprehensive and Continuous	End Semester Examination
	Assessment	
	50%	50%

Reference books:

Reference books:

- 1. Fundamentals of Molecular Spectroscopy, C. N. Banwell and E. M. McCash, McGraw Hill Education, 4th Edition 2016
- Molecular structure and spectroscopy, G. Aruldhas, 2nd Edition, Practice Hall of India, Pvt Ltd., New Delhi – 110001, 2007.
- 3. Introduction to Spectroscopy, D. L. Pavia, G. L. Lampman, G. S. Kriz, Thompson Learning Inc, 5th Ed 2015.

School	School of Basic and Applied Sciences (SOBAS)
Programme/Discipline	B.Sc. (H) Chemistry
Batch	2024-28
Semester	VI
Course Title	Organometallics and Reaction Kinetics
Course Code	CHM307
Credit	4
Contact Hours	3-1-0
(L-T-P)	
Course Type	Theory
Course Objective	This course offers an in-depth study of organometallic chemistry and the principles of reaction kinetics. It covers the structure, bonding, and reactivity of organometallic compounds, including metal carbonyls, nitrosyls, cyanides, and ferrocene. Key topics include the 18-electron rule, fluxional molecules, and the role of organometallic complexes in homogeneous catalysis. The course also provides a detailed exploration of reaction kinetics, thermodynamic and kinetic aspects, and electron transfer reactions. Special focus is given to reaction mechanisms in square planar complexes and the application of Marcus theory in understanding electron transfer. Laboratory sessions and problem- solving exercises are integrated to reinforce theoretical concepts. Prerequisites : Introductory courses in inorganic chemistry and physical chemistry are recommended.
Course Outcome (CO)	After completion of this course, students will be able to: CO1: Define the basic concepts of organometallic compounds, including the 18-electron and 16-electron rules, and their significance in the structure and stability of complexes. CO2: Analyze the structure, bonding, and IR spectra of metal carbonyls, metal nitrosyls, and metal cyanides, and understand the stereochemical control in metal nitrosyl complexes. CO3: Synthesize ferrocene and explore its reactions, such as acetylation, alkylation, and metallation, to understand its chemical reactivity and applications.

	CO4: Evaluate the mechanisms of organometallic reactions,
ir	ncluding hydrogenation, hydroformylation, and polymerization of
a	lkenes, and their roles in homogeneous catalysis.
0	CO5: Investigate the thermodynamic and kinetic aspects of
re	eactions, particularly in square planar complexes, and apply these
C	oncepts to nucleophilic substitution mechanisms such as solvent
e	xchange and base hydrolysis.
0	CO6: Apply the principles of electron transfer reactions, using the
Ν	Aarcus expression to understand their mechanisms and practical
a	pplications in organometallic chemistry.

Module	Description
Ι	Introduction to Organometallic compounds- Basic idea of organometallic
	compounds, 18 electron and 16 electron rules for organometallic complexes.
II	Structure and bonding of organometallic compounds- Structures and bonding of
	metal carbonyls, IR spectra of metal carbonyls, metal nitrosyls, stereochemical control
	of valence of metal nitrosyls, metal cyanides, Zeise's salt, fluxional molecule.
III	Structure and reactivity of Ferrocene- Ferrocene: Preparation and reactions
	(acetylation, alkylation, metallation, Mannich Condensation).
IV	Organometallic Reactions - Reactions of organometallic complexes. Homogeneous
	catalysis by organometallic compounds: hydrogenation, hydroformylation and
	polymerization of alkenes.
V	Introduction to reaction kinetics- Thermodynamic and Kinetic aspects of reactions.
VI	Reactions in square planar complexes- Mechanism of nucleophilic substitution in
	square planar complexes. Solvent exchange, aquation, anation, base hydrolysis, acid
	catalyzed hydrolysis.
VII	Electron Transfer Reactions- Mechanism of electron transfer reactions, applications
	of Marcus expression (simple form).

Evaluation:

Mode of Evaluation	Theory	
Weightage	Comprehensive and Continuous	End Semester Examination
	Assessment	
	50%	50%

Reference books:

Reference books:

- a) F. Basolo and R.C. Pearson, Mechanisms of Inorganic Chemistry
- b) B. D. Gupta and A. J. Elias, Organometallic Chemistry
- c) Greenwood, N.N. & Earnshaw. *Chemistry of the Elements*, Butterworth-Heinemann. 1997.
- d) Cotton, F.A. & Wilkinson, G. Advanced Inorganic Chemistry, Wiley, VCH, 1999.

e) Douglas, B.E; Mc Daniel, D.H. & Alexander, J.J. Concepts & Models of Inorganic Chemistry

SYLLABUS Advanced special chemistry-1

School	School of Basic and Applied Sciences (SOBAS)	
Programme/Discipline	B.Sc. (H) Chemistry	
Batch	2024-28	
Semester	VI	
Course Title	Solid State Chemistry	
Course Code	CHM308	
Credit	4	
Contact Hours	3-0-1	
(L-T-P)		
Course Type	Hybrid	
Course Objective	This course provides an in-depth exploration of solid-state chemistry, focusing on the structural, electronic, and physical properties of solid materials. Topics include chemical crystallography, characterization techniques, electronic properties, defects, phase transitions, and preparative methods. Students will engage in hands-on laboratory experiments, synthesizing and characterizing metal nanomaterials, semiconductors, and single crystals, while employing advanced techniques such as X-ray diffraction, electron microscopy, and thermal analysis. Emphasis will be placed on the relationship between structure and properties, preparing students for research and industry applications in materials science.	
Course Outcome (CO)	After completion of this course, students will be able to: CO1: Explain the fundamental concepts of chemical crystallography, including space lattice, point groups, space groups, and crystal energetics, and apply these principles to characterize crystal structures of various materials like silicates,	

zeolites, and nanostructures.
CO2: Evaluate the various characterization techniques for solids,
such as X-ray diffraction, electron microscopy, and thermal and
spectroscopic methods, and apply them to analyze the physical
properties and structure of materials.
CO3: Analyze the electronic properties and defects in solids,
including the free electron model, point defects, dislocations, and
diffusion mechanisms, and understand their impact on the
behavior of metals, semiconductors, and insulators.
CO4: Investigate phase transitions in materials, including
ordered-disorder transitions, martensite-austenite transformations,
and liquid crystals, and relate these transitions to the material's
tructure and properties such as magnetic, electrical, and optical
ehaviors.
CO5: Apply preparative techniques for the synthesis and
processing of solids, including powder synthesis, sintering,
diffusion processes, and thin film deposition, and tailor materials
for specific applications through solid-state ionics and crystal
growth methods.
CO6: Perform laboratory experiments to synthesize and
characterize materials, such as metal nanomaterials,
semiconductors, and thin films, and utilize techniques like X-ray
diffraction, band gap calculation, and single crystal structure
determination to analyze their properties.

Module	Description	
Ι	Chemical crystallography- Space lattice, Crystal point groups, space group,	
	Stereographic projections, Packing in solids, Crystal structures of representative	
	systems, Silicates and Zeolites, Cements, Glasses, Quasicrystals, Nanostructures.	
	Crystal classifications, Crystal energetics. Madelung constant and Lattice energy.	
II	Characterization techniques for solids- X-ray diffraction, Electron microscopy	
	(SEM, TEM, AFM), Thermal techniques (TG, DTA, DSC), Spectroscopic techniques	
	(Mossbauer, IR, UV-VIS) and Physical property measurement techniques (Magnetic	
	moments-VSM /SQUID, Electrical resistivity – Two / Four probe methods and thermal	
	conductivity, Optical band gap, XPES, XAS).	
III	Electronic properties and defects:	
	Free electron model, Metals, semiconductors and insulators, doped semiconductors	

	Solid state Ionics. Point defects, Dislocations, Extended defects, Clusters and	
	aggregates, Color centers, non-stoichiometry of compounds, Diffusion mechanisms,	
	Fick's law, Kirkendall effect.	
IV	Phase transitions- Critical phenomena, variety of phase transitions (Ordered- disorder,	
	Martensite-austenite, Spinodal decompositions etc.), Liquid crystals, Structure-property	
	relations (magnetic, electrical, superconductivity, optical and thermal).	
V	Preparative techniques- Powder synthesis by conventional and modern chemical	
	methods, Reactivity of solids, Decomposition mechanisms, Powder processing	
	(sintering and diffusion processes), Tailoring of solids, Special methods for single	
	crystal growth and thin films depositions.	
VI	Lab:	
	1. Synthesis of metal nanomaterials and determine their plasmon band	
	2. Synthesis of semiconductor materials and check the effect of size.	
	3. X-ray data analysis and determine the phase of the material	
	4. Estimation of lattice strain (Williamson-Hall Effect) on doping nanomaterials from	
	the powder x-ray data.	
	5. Different techniques to grow single crystals.	
	6. Band gap calculation of materials from UV-VIS data.	
	7. Metal based nano-thin film preparation.	
	8. Single crystal structure determination by different software packages	

Mode of Evaluation	Theory	
Weightage	Comprehensive and Continuous	End Semester Examination
	Assessment	
	50%	50%

Reference books:

- 1. West, A. R., Solid State Chemistry and Its Applications, John Wiley & Sons, 1984
- 2. Chakrabarty, K., Solid State Chemistry, New Age Publishers, 1996.
- 3. Introduction to Solid State Physics, C. Kittle. Wiley India.

Programme/Discipline	B.Sc. (H) Chemistry
Batch	
Datti	2024-28
Semester	VI
Course Title	Materials of Industrial Importance
Course Code	CHM309
Credit	4
Contact Hours	3-0-1
(L-T-P)	
Course Type	Hybrid
Course Objective	This course explores the properties, synthesis, and industrial applications of materials crucial to modern technology and manufacturing, including glass, ceramics, pesticides, surface coatings, battery technology, catalysis, and dyes. Students will gain insight into the environmental and societal impacts of materials and industrial processes, with practical lab sessions focusing on material preparation, spectroscopic analysis, and industrial applications.
Course Outcomes	After completion of this course, students will be able to:
(CO)	CO1: Describe the properties, classification, and manufacturing processes of various types of glass and ceramics, including silicate and non-silicate glasses, and understand their applications in materials like bio-glass, safety glass, and superconducting oxides.
	 CO2: Examine the dynamics of pesticide residues in the atmosphere, water, and soil, and assess their effects on human health, the environment, and agricultural systems, with a focus on the impact on ecosystems and food security. CO3: Evaluate the principles and functioning of different battery technologies, such as lithium batteries, solid-state electrolyte

characteristics and applications in energy storage and renewable energy systems.
CO4: Analyze the mechanisms of catalysis, including homogeneous, heterogeneous, and electrocatalysis, and apply these principles to industrial applications, reactor design, and optimization of catalytic processes.
CO5: Conduct laboratory experiments to prepare and characterize materials such as metallic coatings on ceramics and plastics, bioglasses, and dyes, and use spectroscopic techniques to identify pesticide residues in different environments.
CO6: Apply the concepts of phase transfer catalysts and the use of zeolites in catalytic processes, and investigate methods for deactivating, regenerating, and optimizing catalysts for industrial reactions.

Module	Description			
Ι	Glass and Ceramics- Glassy state and its properties, classification (silicate and non-silicate			
	glasses). Manufacture and processing of glass. Soda lime glass, lead glass, armoured glass,			
	safety glass, borosilicate glass, fluorosilicate, coloured glass, photosensitive glass and bio-			
	glass. Important clays and feldspar, ceramic, Raw materials-their composition, occurrence,			
	properties and classification. Manufacture of white ware, drying and firing of ceramic products			
	and their applications, superconducting and semiconducting oxides, fullerenes carbon			
	nanotubes and carbon fibre.			
II	Pesticides:			
	a) Pesticides Residues in the Atmosphere: Pesticides into the atmosphere and their fate,			
	Transport of vapours, Precipitation, effect of residues on human life, b) Pesticides			
	residues in Water system: Nature and origin of pollution of aquatic systems, Point and			
	Non-Point pollution. Dynamics of pesticides in aquatic environment. c) Pesticides			
	residues in the Soil: Absorption, Retention, Transport and Degradation of pesticides in			
	the soil, Effect on microorganisms and Consequent effect on the soil condition,			
	Fertility, Interaction in the soil, d) Effect of pesticide residues on the quality of human			
	life. Model ecosystem, In general and consequent effect on human life. The Cases of &			
	affected societies and starving populations facing problems of health and nutrition,			
	Traditional wisdom and Food security.			
III	Battery technology: Primary and secondary batteries, battery components and their			

	rale Characteristics of Dottern Warking of following bettering Li Dottern Solid state				
	role, Characteristics of Battery. working of following batteries: Li-Battery, Sond state				
	electrolyte battery &Fuel cells, Solar cell, dye sensitized solar cell, polymer cell.				
IV	Catalysis- General principles and properties of catalysts, homogenous catalysis, heterogenous				
	catalysis and electrocatalysis and their industrial applications, Deactivation or regeneration of				
	catalysts. Phase transfer catalysts, application of zeolites as catalysts. Leaching and soxlet				
	washing. Catalytic process design and optimization: reactor type and configuration, kinetic				
	modelling and reactor design.				
VII	Materials of industrial importance lab-				
	1. Metallic coatings on ceramic and plastic material.				
	2. Preparation of bioglasses.				
	3. Identification of pesticides by different spectroscopic techniques				
	4. Preparation of dye.				

Mode of Evaluation	Theory	
Weightage	Comprehensive and Continuous Assessment End Semester Examination	
	50%	50%

Reference books:

- 1. E. Stocchi: Industrial Chemistry, Vol-I, Ellis Horwood Ltd. UK.
- 2. R. M. Felder, R. W. Rousseau: *Elementary Principles of Chemical Processes*, Wiley Publishers, New Delhi.
- 3. W. D. Kingery, H. K. Bowen, D. R. Uhlmann: *Introduction to Ceramics*, Wiley Publishers, New Delhi.
- 4. J. A. Kent: Riegel's Handbook of Industrial Chemistry, CBS Publishers, New Delhi.
- 5. P. C. Jain, M. Jain: *Engineering Chemistry*, Dhanpat Rai& Sons, Delhi.
- 6. R. Gopalan, D. Venkappayya, S. Nagarajan: *Engineering Chemistry*, Vikas Publications, New Delhi.

B. K. Sharma: Engineering Chemistry, Goel Publishing House, Meerut.

School	School of Basic and Applied Sciences (SOBAS)			
Programme/Discipline	B.Sc. (H) Chemistry			
Batch	2024-28			
Semester	VI			
Course Title	Project			
Course Code	CHM312			
Credit	4			
Contact Hours	0-0-4			
(L-T-P)				
Course Type	Practical			
Course Objective	1. To foster independent research skills by guiding students through the process of formulating research questions, developing hypotheses, and designing experiments or studies related to their field of study.			
	2. To enhance problem-solving and critical thinking abilities by encouraging students to analyze complex problems, evaluate potential solutions, and apply theoretical knowledge to practical scenarios.			
	3. To develop project management skills, including time management, resource allocation, and collaboration, while working on long-term research or development projects.			
	4. To provide hands-on experience in data collection, analysis, and interpretation, using appropriate research methodologies, tools, and techniques specific to their discipline.			
	5. To improve scientific communication and presentation skills, enabling students to effectively convey their research findings in written reports, presentations, and discussions with peers and faculty.			
	6. To encourage innovation and creativity, allowing students to explore new ideas, technologies, or methodologies in addressing current issues or challenges in their field.			

	7. To prepare students for future professional or academic pursuits, by giving them exposure to research environments and the opportunity to produce a substantial piece of independent work.			
Course Outcomes	After completion of this course, students will be able to:			
(CO)	CO1: Develop a comprehensive project proposal by identifying a relevant research problem, formulating objectives, and planning methodologies for data collection and analysis.			
	CO2: Implement the project plan by applying appropriate research techniques, tools, and technologies to execute the tasks outlined in the project scope.			
	CO3: Analyze the collected data critically, interpreting the results in the context of the project objectives, and identifying trends, patterns, and implications.			
	CO4: Evaluate the effectiveness of the project's outcomes, assessing its success in meeting the objectives, and suggesting improvements or modifications based on feedback and results.			
	CO5: Demonstrate effective communication skills by preparing and presenting a detailed project report, showcasing the findings, methodology, and conclusions to both technical and non-technical audiences.			
	CO6: Synthesize information from various sources to develop innovative solutions, integrate multidisciplinary approaches, and propose future directions for the project or research.			

Module	Description
	The students will be assigned to Supervisor for research work in a recent field of
	research.

Evaluation:

Mode of Evaluation	Theory	
Weightage	Comprehensive and Continuous Assessment End Semester Examination	
	50%	50%

School of Basic and Applied Sciences Department of Chemistry

BSc Chemistry Batch: 2024-2028 Semester: VII

S.No	Type of	Code	Title of the Course	C	onta	ct Hour Week	rs Per	Remarks
	Course			L	Т	Р	С	
1	CC	400-499	Advanced special chemistry -2 1. Fundamentals of nanomaterials 2. Polymer and Paints	3	0	1	4	CC-16
2	CC	400-499	Inorganic Cluster and spectroscopic application	3	0	1	4	CC-17
3	CC		Photochemical and pericyclic reactions				3	CC-18
4	CC	400-499	Research Methodology	3	0	0	3	CC-19 (Research)
5	Minor			3	0	1	4	CC- 19(without Research)
Semester Credits					20			

School	School of Basic and Applied Sciences (SOBAS)		
Programme/Discipline	B.Sc. (H) Chemistry		
Batch	2023-27		
Semester	VII		
Course Title	Fundamentals of nanomaterials		
Course Code			
Credit	4		
Contact Hours (L-T-P)	3-0-1		
Course Type	Hybrid		
Course Objective	The objective of this course is to provide students with a comprehensive understanding of nanomaterials, encompassing their historical development, structural organization, and the principles of quantum confinement that govern their properties. Students will explore various synthesis techniques, including physical, chemical, and bio-inspired methods, to produce a range of nanomaterials, such as metal nanoparticles and carbon-based structures. The course will also cover the diverse properties and functions of nanomaterials, including mechanical, magnetic, electrical, and optical characteristics, as well as considerations of biocompatibility and toxicity. Through hands-on laboratory experiences, students will synthesize and characterize different types of nanoparticles using advanced techniques, fostering a deep appreciation of the practical applications and emerging technologies in the field of nanotechnology.		
Course Outcome (CO)	 After completion of this course, students will be able to: After completion of this course, students will be able to: CO1: Analyze the historical development and organization of nanomaterials, including atomic, molecular, cluster, and supramolecular structures, and explain their significance in nanotechnology. CO2: Describe the principles of quantum confinement, surface reconstruction, and the relationship between dimensionality, density of states, and bandgap in nanomaterials. CO3: Synthesize various nanomaterials using physical, chemical, and bio-inspired methods, and evaluate their structure, size, and properties 		

through appropriate characterization techniques.				
CO4: Investigate the mechanical, magnetic, electrical, optical, and				
biocompatibility properties of nanomaterials, emphasizing their toxicity				
and emergent quantum behavior.				
CO5 : Employ advanced characterization techniques such as XRD, DLS,				
FTIR, SEM, TEM, UV-Vis, and AFM to analyze the size, surface				
characteristics, and structural integrity of synthesized nanomaterials.				
CO6: Conduct laboratory experiments to synthesize nanoparticles (e.g.,				
copper, silver, iron oxide, ZnO) using various methods, and demonstrate				
their size-dependent properties and confirm synthesis through				
appropriate analytical techniques.				

Module	Description			
Ι	Historical development of nanomaterials, organization of matter-atoms, molecules, clusters and supramolecules.			
Π	Quantum Confinement, Structure and Bonding, Intermolecular forces, Molecular and crystalline structures-Bulk to surface transition, density of states, bandgap and dimensionality of nanomaterials, surface reconstruction.			
III	Synthesis of Nanomaterials. Physical methods, Chemical methods and Bio inspired methods—1D-2D nanomaterials, carbon based materials, aerogels, zeolites, self-assembled nanomaterials, core shell particles, Metal, Metal Oxide, semiconductor nanoparticles, Carbon Nanotubes.			
IV	Structure, function and properties of nanomaterials: mechanical, magnetic, electrical, optical, biocompatibility, toxicity and emergent quantum properties.			
V	Characterization of nanomaterials: Size and Surface Characterization using powder XRD analysis, dynamic Light Scattering, zeta Potential Analysis, FT-IR, SEM, UV-Vis, photoluminescence, TEM, FESEM and AFM studies.			
VI	 Lab- Synthesis of Copper/ Silver/ Gold nanoparticles by simple chemical reduction method and confirm the synthesis of size dependent nanomaterial by surface plasmon resonance analysis. Synthesis of Iron oxide nanoparticles by wet chemical method and confirm the synthesis by band gap analysis. Synthesis of mixed ferrite nanoparticles by co-precipitation method and characterize the product by FTIR analysis. Synthesis of CdS nanoparticles by simple wet chemical method and demonstrate the size variation. Synthesis of ZnO quantum dots by simple solvothermal synthesis and confirm the size dependent variation in band gap. Bio-inspired synthesis of nanoparticles from plant materials. 			

Mode of Evaluation	Theory			
Weightage	Comprehensive and Continuous Assessment	End Semester Examination		
	<mark>50%</mark>	<mark>50%</mark>		

Reference books:

- 1. C. N. R. Rao, A. Muller, A. K. Cheetham, *The Chemistry of Nanomaterials: Synthesis, Properties and Applications*, Volume 1, Wiley-VCH, Verlag GmbH, Germany (2004).
- 2. Guozhong Cao, *Nanostructures &Nanomaterials Synthesis, Properties G;Z: Applications*, World Scientific Publishing Private, Ltd., Singapore (2004).
- Carl C. Koch, Nanostructured Materials: Processing, Properties and Potential Applications, Noyes Publications, William Andrew Publishing Norwich, New York, U.S.A (2002).
- 4. T. Pradeep, *—Nano: The Essentials*, McGraw Hill education, (2007).
- 5. Udo H. Brinker, Jean-Luc Mieusset (Eds.), *Molecular Encapsulation: Organic Reactions inConstrained Systems*, Wiley Publishers (2010). Jennifer Kuzma and
- 6. Peter VerHage, *Nanotechnology in agriculture and food production*, Woodrow Wilson International Center, (2006).
- 7. Fundamentals of Molecular Spectroscopy by C. N. Banwell, McGraw-Hill
- 8. Handbook of Thin Film Deposition, Hartmut Frey, Hamid. R. Khan Editors.
- 9. Elements of X-ray diffraction, B. D. Cullity, Creative Media Partners, LLC.

School	School of Basic and Applied Sciences (SOBAS)
Programme/Discipline	B.Sc. (H) Chemistry
Batch	2023-27
Semester	VII
Course Title	Polymer and Paints
Course Code	CHM40
Credit	4
Contact Hours	3-0-1
Course Type	Hybrid
Course Objective	The objective of this course is to provide a comprehensive understanding of polymeric materials, covering their fundamental properties, classification, and molecular interactions. Students will explore the mechanisms and kinetics of various polymerization processes, including step growth, radical chain growth, ionic chain polymerizations, and copolymerization, along with thermodynamic considerations. The course delves into the preparation and nomenclature of polymers, emphasizing addition and condensation polymerization mechanisms, and introduces advanced synthesis methods for polymers and their applications. It covers the synthesis and structural aspects of key rubbers and plastics, such as polyethylene, polypropylene, and natural and synthetic rubbers, as well as engineering plastics like nylon and polycarbonate. Additionally, the course addresses the science and application of paints and dyes, including surface coatings, pigments, special paints, and organic pigments, alongside the principles of color origin and chromatic behavior in organic molecules. Overall, the course equips students with a strong foundation in polymer science and its industrial applications, preparing them for advanced studies and professional practice.
Course Outcome (CO)	After completion of this course, students will be able to: CO1: Understand the classification, nomenclature, and functionality of polymers, including the relationship between molecular forces, chemical bonding, and polymer properties. CO2: Analyze the kinetics and mechanisms of polymerization processes, including step growth, chain growth, ionic, and

T
coordination polymerizations, and their thermodynamic aspects.
CO3: Evaluate the methods for determining molecular weight, molecular
weight distribution, degree of crystallinity, and crystalline melting points of
polymers using various techniques.
CO4 : Apply the principles of polymer synthesis to prepare and characterize
different polymers, including addition, condensation, and Ziegler-Natta
polymerizations.
CO5 : Design surface coatings and polymeric applications by synthesizing
rubbers, plastics, and specialty paints, considering their structural and
functional properties.
CO6: Perform polymer synthesis, characterization, and analysis using
laboratory techniques such as viscometry, IR studies, and mechanical testing to
validate polymer properties.

Module	Description
Ι	Unit-1: Introduction to polymeric materials, its functionality- Different schemes of
	classification of polymers, Polymer nomenclature, Molecular forces and chemical bonding in
	polymers, Texture of Polymers. Criteria for synthetic polymer formation, classification of
	polymerization processes, Relationships between functionality, extent of reaction and degree of
	polymerization. Bifunctional systems, Poly-functional systems.
II	Kinetics and thermodynamical aspects of Polymerization- Mechanism and kinetics of step
	growth, radical chain growth, ionic chain (both cationic and anionic) and coordination
	polymerizations, Mechanism and kinetics of copolymerization, polymerization techniques
	Determination of molecular weight of polymers $(M_n, M_w, \text{ etc})$ by end group analysis,
	viscometry, light scattering and osmotic pressure methods. Molecular weight distribution and
	its significance. Polydispersity index. Determination of crystalline melting point and degree of
	crystallinity, Morphology of crystalline polymers, Factors affecting crystalline melting point.
III	Unit-3: Preparation of Polymers
	Nomenclature - Classification of Polymers - Homo and hetero chain polymers - Addition
	polymerization - Condensation polymerization. Mechanism of Addition Polymerization -
	Cationic - Anionic polymerization - Free radical and Co-ordination or Ziegler-Natta
	polymerization.
IV	Unit-4: Application: Rubbers and Plastics
	Synthesis and structural aspect of Polyethylene, Polypropylene, Polystyrene, Polyvinyl
	Chloride, Polyesters, Acrylic, PU polymers. Engineering Plastics: Nylon, Polycarbonate,
	Polyphenylene oxide. Natural and synthetic rubbers: Recovery of NR hydrocarbon from latex,
	Styrene Butadiene rubber, Polychloroprene rubber, Nitrile rubber, Butyl rubber, Ethylene-
N/	Unit-5: Paint & Dve- Objectives of coatings surfaces preliminary treatment of surface
v	classification of surface coatings Paints Pigments toners and lakes nigments Fillers
	Thinners Enamels emulsifying agents Special paints: Heat retardant Fire retardant Eco-
	friendly paint Plastic paint Dyes Way poliching additives Metallic coatings metal praying
	and anodizing Origin of colour in organic molecules, chromatic and achromatic colours
	and anouzing. Origin of colour in organic molecules, circonauc and actionatic colours,

	solvatochromism, halochromism; Chromophores, auxochromes, chromogens, basic	
	fluorophores; organic pigments (Anthraquinone, Benzimidazolone-dioxazines, Diazo lakes).	
VI	Unit-6: Lab-	
	A. Polymer synthesis:	
	1. Free radical solution polymerization of styrene (St)	
	2. Preparation of nylon 6,6,	
	3. Interfacial polymerization, preparation of polyester from isophthaloyl chloride (IPC) and phenolphthalein	
	4. Preparation of urea-formaldehyde resin,	
VII	B. Polymer characterization:	
	1. Determination of molecular weight by viscometry:	
	2. Testing of mechanical properties of polymers.	
	C. Polymer analysis 1. Instrumental Techniques.	
	2 IR studies of polymers	
	2. IN studies of polymers,	
	Reference Books	
	1. L. H. Sperling, Introduction to Physical Polymer Science, 4th ed. John Wiley &Sons(2005)	
	2. Malcolm P. Stevens, Polymer Chemistry: An Introduction, 3rd ed. Oxford UniversityPress (2005)	
	3. Seymour/ Carraher's Polymer Chemistry, 9th ed. by Charles E. Carraher, Jr. (2013).	
	4. 1. K.J. Saunders: Organic Polymer Chemistry, Chapmann & Hall, London.	
	5. P.J. Flory: Principles of Polymer Chemistry, Cornell University Press, NY.	
	6. G. Odian: Principles of Polymerization, John Wiley & Sons Inc, NY.	
	7. James E. Mark, Hary Allcock, Robert West, Inorganic Polymers, Prentice Hall Englewood.	

Mode of Evaluation	Theory	
Weightage	Comprehensive and Continuous Assessment	End Semester Examination
	<mark>50%</mark>	<mark>50%</mark>

Reference books:

Reference Books:

- 1. E. Stocchi: Industrial Chemistry, Vol -I, Ellis Horwood Ltd. UK.
- 2. P.C. Jain, M. Jain: Engineering Chemistry, Dhanpat Rai & Sons, Delhi.
- 3. B.K. Sharma: Industrial Chemistry, Goel Publishing House, Meerut.

School	School of Basic and Applied Sciences (SOBAS)
Programme/Discipline	B.Sc. Chemistry
Batch	2024-28
Semester	VII
Course Title	Research methodologies
Course Code	CHM406
Credit	4
Contact Hours	2-1-1
(L-T-P)	
Course Type	Hybrid
Course Objective	The objective of this course is to provide students with comprehensive knowledge on sourcing and utilizing both print and digital scientific information effectively. Students will gain familiarity with primary, secondary, and tertiary resources such as journals, abstracts, and databases like Chemical Abstracts and Beilstein, as well as digital tools like SciFinder, Google Scholar, and Scopus. The course also emphasizes methods of scientific research, writing, and communication, equipping students with skills to conduct literature surveys, present findings, and write scientific papers while maintaining ethical standards. Additionally, it covers chemical safety protocols and the ethical handling of hazardous substances, ensuring students understand safe lab practices, waste disposal, and chemical recycling.
	 CO1: Identify and categorize various types of information sources, including primary, secondary, and tertiary sources, along with their respective indices and journals. CO2: Summarize key features and functionalities of digital resources such as e-journals, citation indexes, and databases (e.g., SciFinder, Google Scholar) that are essential for conducting effective scientific research. CO3: Demonstrate the ability to locate and utilize relevant print and digital information resources for writing literature surveys, conducting research, and compiling bibliographies for scientific papers. CO4: Evaluate scientific papers and research articles for their methodological soundness and ethical adherence, including the assessment of potential plagiarism and proper citation practices. CO5: Design and present a scientific poster that effectively communicates research findings, employing appropriate visual and textual elements while adhering to ethical standards in scientific reporting and writing. CO6: Develop comprehensive research strategies by integrating information from primary, secondary, and tertiary sources to support

Module	Description
Ι	Print: Sources of information: Primary, secondary, tertiary sources; Journals: Journal
	abbreviations, abstracts, current titles, reviews, monographs, dictionaries, text-books, current

	contents, Introduction to Chemical Abstracts and Beilstein, Subject Index, Substance Index,
	Author Index, Formula Index, and other Indices with examples.
Π	Digital: Web resources, E-journals, Journal access, TOC alerts, Hot articles, Citation index,
	Impact factor, H-index, E-consortium, UGC infonet, E-books, Search engines, Scirus, Google
	Scholar, ChemIndustry, Wiki- Databases, ChemSpider, Science Direct, SciFinder, Scopus,
	WoS, CCDC and ICSD.
III	Methods of Scientific Research and Writing Scientific Papers:
	Reporting practical and project work. Writing literature surveys and reviews. Organizing a
	poster display. Giving an oral presentation. Writing scientific papers - justification for
	scientific contributions, bibliography, description of methods, conclusions, the need for
	illustration, style, publications of scientific work. Writing ethics. Avoiding plagiarism.
IV	Chemical Safety and Ethical Handling of Chemicals:
	Safe working procedure and protective environment, protective apparel, emergency procedure
	and first aid, laboratory ventilation. Safe storage and use of hazardous chemicals, procedure for
	working with substances that pose hazards, flammable or explosive hazards, procedures for
	working with gases at pressures above or below atmospheric – safe storage and disposal of
	waste chemicals, recovery, recycling and reuse of laboratory chemicals.

Mode of Evaluation	Practical	
Weightage	Comprehensive and Continuous Assessment	End Semester Examination
	50%	50%

School	School of Basic and Applied Sciences (SOBAS)
Programme/Discipline	B.Sc. (H) Chemistry
Batch	2023-27
Semester	VII
Course Title	Inorganic Cluster and spectroscopic application
Course Code	CHM404
Credit	4
Contact Hours (L-T-P)	3-0-1
Course Type	Hybrid
Course Objective	The course focuses on advanced concepts in inorganic chemistry, covering both theoretical and practical aspects. It begins with borane chemistry, exploring metallaboranes, metallacarboranes, and heteroboranes through the application of the Polyhedral Skeletal Electron Pair Theory (PSEPT) and the principle of isolobality. Further, the course delves into inorganic rings, clusters, and metal-metal bonding, with an emphasis on compounds exhibiting single and multiple bonds, including carbonyl clusters. Advanced topics in inorganic catalysis, particularly catalysis and photocatalysis by metal complexes, are introduced, followed by an in-depth study of Electron Paramagnetic Resonance (EPR) spectroscopy, Nuclear Magnetic Resonance (NMR), and Nuclear Quadrupole Resonance (NQR) spectroscopy and their applications in structural elucidation. Additionally, the course includes hands-on laboratory training in spectrophotometric analysis for the estimation and analysis of metal ions, fostering both theoretical understanding and practical skills in the study of inorganic compounds.
Course Outcome (CO)	After completion of this course, students will be able to: CO1: Analyze the structure, bonding, and applications of metallaboranes, metallacarboranes, and heteroboranes, with an emphasis on the principle of isolobility in understanding their chemical properties. CO2: Explain the concepts of metal-metal bonding, including the molecular orbital approach, and apply these concepts to understand the bonding in dimolybdenum, dirhenium complexes, and carbonyl clusters. CO3: Investigate the mechanisms of inorganic catalysis and photocatalysis by metal complexes, demonstrating their applications in advanced chemical reactions. CO4: Interpret advanced EPR spectra and apply the knowledge to

analyze the electronic environments and bonding in different inorganic
molecules.
CO5: Apply the principles of NMR spectroscopy to analyze the
chemical shifts, splitting patterns, and structural information in organic
and coordination compounds, including those with paramagnetic metal
ions.
CO6: Conduct spectrophotometric analysis of metal ions, determining
concentration, coordination numbers, and elemental composition
through various spectrophotometric methods in laboratory experiments.

Module	Description
Ι	Unit-1: Borane Chemistry- Metallaboranes, Metallacarboranes, Applications of
	PSEPT over heteroboranes. Principle of Isolobility: Development and formulation of
	the concept of isolobility and its applications in the understanding of structure and
	bonding of heteroboranes.
II	Unit-2: Inorganic Rings and Clusters- Metal-metal bonding (MO approach), metal-
	metal single and multiple bonded compounds. Bonding in dimolybdenum and
	dirhenium complexes, carbonyl clusters.
III	Unit-3: Advanced inorganic catalysis: Catalysis and photocatalysis by inorganic
	metal complexes
IV	Unit-4: EPR spectroscopy and its applications- Advanced EPR spectroscopy and its
	applications in different inorganic molecules.
V	Unit-5: NMR:
	Nuclear spin, NMR active nuclei, principle of nuclear magnetic resonance, equivalent
	and non-equivalent carbons and protons, chemical shift δ), shielding / deshielding,
	upfield and downfield shifts. NMR peak area (integration for PMR), diamagnetic
	anisotropy, relative peak positions of different kinds of protons (alkyl halides, olefins,
	alkynes, aldehyde, acid, alcohol, amine etc.), substituted benzene derivatives, first
	order coupling (splitting of the signals: ordinary ethanol, bromoehane, dibromoehanes),
	coupling constants, elementary idea of 13C, splitting pattern in presence of heteroatoms
	(P, F), structure analysis. ¹ H-NMR spectra of coordination compounds of paramagnetic
	metal ions.
VI	Unit-6: NQR spectroscopy- Principle, nuclear quadrupole coupling constant,
	structural information from NQR spectra.
X 7 X	
VI	Unit-7: Lab-Spectrophotometric Analysis of Metal Ions
	8. Spectrophotometric estimation of Fe in alloy.
	9. Determination of coordination number of complexes by Job's method

10. Spectrophotometric estimation of Mn as MnO ₄ ⁻
11. Spectrophotometric estimation of Cr as CrO ₄ ²⁻
12. Spectrophotometric estimation of Fe in multivitamin tablets.
13. Spectrophotometric estimation of Mn and Cr in a mixture.

Mode of Evaluation	Theory	
Weightage	Comprehensive and Continuous Assessment	End Semester Examination
	<mark>50%</mark>	<mark>50%</mark>

Reference books:

- 1. Greenwood, N.N. & Earnshaw. *Chemistry of the Elements*, Butterworth-Heinemann. 1997.
- 2. Cotton, F.A. & Wilkinson, G. Advanced Inorganic Chemistry, Wiley, VCH, 1999.
- 3. Douglas, B.E; Mc Daniel, D.H. & Alexander, J.J. Concepts & Models of Inorganic Chemistry.
- 4. Sathyanarayana, D. N., Handbook of Molecular Spectroscopy
- 5. Das, A. K., Vol. 7. Inorganic Chemistry

School	School of Basic and Applied Sciences (SOBAS)
Programme/Discipline	B.Sc. (H) Chemistry
Batch	2023-27
Semester	VII
Course Title	Photochemical and Pericyclic reactions
Course Code	CHM405
Credit	2
Contact Hours (L-T-P)	1-0-1
Course Type	Hybrid
Course Objective	The course on "Photochemical and Pericyclic Reactions" aims to provide students with a comprehensive understanding of the mechanistic aspects and synthetic applications of photochemical and pericyclic reactions in organic chemistry. Through detailed study of photochemical reactions such as the Norrish reactions, photorearrangements, and photoreductions, students will explore the role of light in driving chemical transformations. The course will further delve into radical chemistry, focusing on the generation, detection, and reactivity of radicals in organic synthesis. A significant portion of the course is devoted to understanding pericyclic reactions, including cycloadditions, electrocyclic reactions, and sigmatropic rearrangements, with an emphasis on symmetry principles, Frontier Molecular Orbital (FMO) theory, and their applications in complex organic synthesis. Practical sessions will enhance students' laboratory skills through the extraction of natural products and the synthesis of various heterocyclic compounds, integrating theoretical knowledge with experimental techniques.
Course Outcome (CO)	After completion of this course, students will be able to: CO1: Analyze and explain the mechanisms of photochemical reactions, including photolysis, photoexcitation, photoreduction, and photorearrangement, focusing on specific reactions like Norrish Type I and II, Barton reaction, and cycloadditions. CO2: Demonstrate an understanding of radical chemistry by explaining the generation, detection, and reactivity patterns of radicals, and by describing single electron transfer reactions and the role of radical intermediates in organic transformations. CO3: Apply the Frontier Molecular Orbital (FMO) theory and symmetry principles to predict the behavior and outcome of pericyclic reactions, including cycloadditions, electrocyclic reactions, and

sigmatropic rearrangements.
CO4: Evaluate the selection rules, particularly Woodward-Hoffmann
rules, to understand and classify pericyclic reactions, and apply this
knowledge to design synthetic strategies for complex molecules.
CO5: Synthesize various small heterocycles and natural products by
utilizing appropriate laboratory techniques for extraction and chemical
transformations, including the synthesis of benzoxazole, phthalazine,
pyrazolone, coumarin, indole, and barbituric acid derivatives.
CO6: Investigate the use of pericyclic reactions in organic synthesis and
apply symmetry principles and orbital correlation diagrams to predict
reaction outcomes and synthetic strategies for target molecules.

Module	Description
Ι	Unit-1: Photochemical reaction- Photolysis of carbonyl compounds and nitrites:
	Norrish Type I, Norrish Type II, α -cleavage, Barton reaction, photoreduction,
	photoexcitation, photorearrangement reactions (Photorearrangemnt reaction of
	cyclohexanones, cyclohexadienone and α -tropolone methyl, Di- π -methane,
	photoisomerisation and photodimerisation), cycloadditions of benzene and its
	derivatives.
II	Unit-2: Radical Chemistry: Generation and detection of radicals, radical initiators,
	reactivity pattern of radicals, radical reaction intermediates, single electron transfer
	reactions
III	Unit-3: Pericyclic reactions: Frontier Molecular Orbital (FMO) approach and concept
	of aromaticity of transition states). Symmetry principles in pericyclic reactions, Orbital
	and state correlation diagram for $4n\pi$, $(4n+2)\pi$ systems, selection rules (Woodward-
	Hoffmann selection rules and general rules), Classification (Cycloaddition reactions,
	Electrocyclic reactions, Sigmatropic rearrangements, Ene reactions), application in
	synthesis.
IV	Unit-4: Lab- Extraction, small heterocycle Synthesis:
	1. Natural product extraction (caffeine, nicotine, casein etc.) etc.
	2. Heterocycle Synthesis:
	a) Synthesis of benz-oxazole from o-amino phenol derivatives,
	b) Synthesis of phthalazine derivative from phthalic anhydride,
	c) Synthesis of pyrazolone derivative from phenyl hydrazine,
	d) Synthesis of coumarin derivative from resorcinol,
	e) Synthesis of indole and carbazole derivative from phenyl hydrazine,
	f) Synthesis of barbituric acid etc.
Evaluation:

Mode of Evaluation	Theory	
Weightage	Comprehensive and Continuous Assessment	End Semester Examination
	<mark>50%</mark>	<mark>50%</mark>

Reference books:

- 1. Stereochemistry of Organic Compounds E. L. Eliel and S. H. Wilen,
- 2. Stereochemistry of Organic Compounds D. Nasipuri,
- 3. Organic Photochemistry J. W. Coxon& B. Halton,
- 4. Elements of Organic Photochemistry D. O. Cowan & K. L. Drisco,
- 5. Pericyclic Chemistry S. M. Mukherjee.
- 6. Frontier Orbitals and Organic Chemical Reactions I. Fleming
- 7. Das, S.C. Advanced Practical Chemistry, Sixth edition,
- 8. Mukherjee, G.N. University handbook of undergraduate chemistry experiments.

School	School of Basic and Applied Sciences (SOBAS)
Programme/Discipline	B.Sc. (H) Chemistry
Batch	2023-27
Semester	VII
Course Title	Supramolecular Chemistry and Its Application
Course Code	CHM407
Credit	2
Contact Hours (L-T-P)	1-0-1
Course Type	Hybrid
Course Objective	The course aims to provide a comprehensive understanding of the principles and applications of supramolecular chemistry, focusing on the intricate roles of non-covalent interactions and their implications in molecular recognition and self-assembly. Students will explore the fundamentals of hydrogen bonding, ion pairing, and aromatic interactions, along with their significance in biological systems such as DNA, coenzymes, and neurotransmitters. Emphasis will be placed on the design and functionality of biomimetic systems and artificial receptors, including cation and anion binding hosts, neutral receptors, and co-receptor systems. Additionally, the course will delve into dynamic supramolecular processes like molecular transport and chirality imprinting, solid-state chemistry including MOFs and COFs, and the cutting-edge field of crystal engineering to develop supramolecular devices with diverse applications in logic gates, energy conversion, and molecular design. Through these topics, students will gain theoretical insights and practical skills essential for advancing research and innovation in supramolecular chemistry and materials science.
Course Outcome (CO)	 After completion of this course, students will be able to: CO1: Identify the fundamental principles of molecular recognition and self-assembly, and explain the role of hydrogen bonding and secondary electrostatic interactions in supramolecular chemistry. CO2 : Analyze the various types of non-covalent interactions, such as ion pairing, van der Waals forces, and aromatic interactions, and their relevance to supramolecular systems. CO3: Interpret the structure and function of biological supramolecular systems, including ionophores, porphyrins, DNA,

and biochemical self-assembly mechanisms.
CO4: Design biomimetic systems and artificial receptors for
cation, anion, and neutral species, incorporating concepts such as
selectivity, solution behavior, and host-guest interactions.
CO5: Evaluate the dynamics of supramolecular chemistry, including
transport processes, combinatorial chemistry, and chirality imprinting, in
molecular design and application.
CO6: Construct advanced solid-state and supramolecular devices,
applying principles of crystal engineering, structure-property
correlations, and molecular logic gates for innovative solutions.

Module	Description
Ι	Unit-1: Basic concept and principles- Molecular recognition and self-assembly, Hydrogen
	Bonds: Definition, Structure and Stability, strength, Secondary Electrostatic Interactions in
	Hydrogen Bonding Arrays.
II	Unit-2: Non-covalent interactions- Ion pairing, Ion-Dipole Interactions, Dipole-Dipole
	interactions, Dipole-Induced Dipole and Ion-Induced Dipole interactions, Van der Waals or
	Dispersion Interactions, Closed shell interactions, Aromatic-Aromatic Interactions.
III	Unit-3: Biological supramolecular systems- Ionophores, Porphyrin and other Tetrapyrrolic
	Macrocycles, Coenzymes, Neurotransmitters, DNA and Biochemical Self-assembly.
IV	Unit-4: Biomimetic systems and Artificial receptors-
	(i) Cation Binding Hosts - Podand, Corand, Cryptand, Spherand; Nomenclature, Selectivity and
	Solution Behaviour;
	(ii) Anion binding hosts - Challenges and Concepts, Biological Receptors, Conversion of
	Cation Hosts to Anion Hosts, Neutral Receptors, Metal-Containing Receptors,
	(ii) Co-receptors -Zwitter ionic, Cascade Complexes, Ion-pair, remote anion and cation
	binding sites,
	(iv) Hosts for Neutral Receptors: Clathrates, Inclusion Compounds, Zeolites, Intercalates,
	Coordination Polymers, Cavitands, Clathrands, resorcicarene, Cyclodextrins and cucurbituril.
V	Unit-5: Dynamics of supramolecular chemistry- Transport processes, Dynamic
	Combinatorial chemistry, Supramolecular chirality and chirality imprinting, molecular
	extraction
VI	Unit-6: Solid-State Chemistry- Catenation, poly-catenation, Rotaxane, molecular knots,
	molecular rotors, Organic Crystal Structures, Metal Organic Frameworks (MOFs), Covalent
	Organic Frameworks.
VII	Unit-7: Crystal Engineering & Supramolecular devices- Supramolecular Synthons,
	Structure-Property Correlation, structure directing agents, design of Solids, phase
	transformations, Chemonics and semiochemistry, pH induced molecular devices, light induces
	molecular devices, energy converting molecular devices, supra-molecular logic gates.

Evaluation:

Mode of Evaluation	Theory	
Weightage	Comprehensive and Continuous Assessment	End Semester Examination
	<mark>50%</mark>	50%

Reference Books:

- 1. Lehn, J.-M. Supramolecular Chemistry: Concepts and Perspectives.
- 2. Das, A. K., An Introduction to Supramolecular Chemistry.

School	School of Basic and Applied Sciences (SOBAS)
Programme/Discipline	B.Sc. (H) Chemistry
Batch	2024-28
Semester	VIII
Course Title	Medical Nanotechnology
Course Code	CHM409
Credit	4
Contact Hours (L-T-P)	3-0-1
Course Type	Hybrid
Course Objective	Understand nanoscale materials and their unique properties in medical applications. Explore nanomedicine techniques for targeted drug delivery and disease treatment. Learn advanced diagnostic tools using nanotechnology. Study therapeutic approaches, including nanorobots and biosensors. Develop skills for designing innovative medical devices and treatments at the nanoscale.
Course Outcome (CO)	 After completion of this course, students will be able to: CO1: Remembering: Students will be able to define key terms and concepts related to nanomaterials and their role in medicine, such as nanoparticles, nanosensors, and drug delivery systems. CO2: Understanding: Students will be able to explain the fundamental principles of nanotechnology and its applications in diagnostics and therapeutics. CO3: Applying: Students will be able to apply nanotechnology techniques in designing solutions for drug delivery and disease detection. CO4: Analyzing: Students will be able to analyze the advantages and limitations of nanotechnology in current

healthcare practices and research.
CO5: Creating : Students will be able to design innovative nanotechnological solutions for complex medical problems, integrating multidisciplinary approaches to develop new diagnostic and therapeutic tools.

Module	Description
Ι	Medical Nanotechnology- Concept of a living cell; Unicellular and multicellular
	organisms; Types of tissues; Microorganisms (Structure, types and clinical
	significance); Viruses (structure, types and clinical significance).
II	Preparation, Characterization of biocompatible nanomaterials-nanospheres, nano
	shells, nano capsules, nanomicelles and their potential use in therapy (Antibiotics,
	photodynamic therapy).
III	Magnetic nanoparticles and their applications in magnetic hyperthermia as MRI
	contrasting agents.
IV	Nanoparticle-Based Drug Delivery using Inorganic Nanoparticles and organic
	nanoparticles (e.g., cyclodextrin, polymer, dendrimers etc) for targeted- site specific,
	and non-targeted drug delivery, nanoencapsulation of water-insoluble drugs for
	intracellular drug delivery.
V	Application of biomimetic hydroxyapatite nanocrystals or bioactive polymer
	nanoparticles in bone substitutes and dentistry.
VI	Application of inorganic nanoparticles for detection of various pollutants and
	biomaterials.
V	Lab-
	1. To identify an analyse the given nanomaterial by FTIR spectroscopy.
	2. To analyse and confirm the crystal structure of given sample by X-ray
	diffraction technique. 3. To perform the time resolved photoluminescence study
	on nanoparticles/ quantum dots.
	3. To carryout Photoluminescence study of the given nanoparticles.

Evaluation:

Node of Evaluation Theory	le of Evaluation Theory	Mode of Evaluation
Theory	I of Evaluation Theory	Wide of Evaluation

Weightage	Comprehensive and Continuous	End Semester Examination
	Assessment	
	50%	50%

Reference Books:

- 1. Yoseph Bar Cohen, Biomimetics: Biologically Inspired Technologies, CRC Press, Boca Raton,
- 2. Reza Arshady and Kenji Kono, —Smart Nanoparticles in Nanomedicinel, MML series volume 8, Knetus Books, London, 2006
- 3. Ramakrishna S, MuruganRamalingam, and Kumar T. S. S., —Biomaterials: A Nano Approachl, CRCPress, London, 2010.
- 4. BikramjitBasu and Ashok Kumar K., —Advanced Biomaterials: Processing and Applications, John Wiley, New Jersey, 2009.
- 5. Hari Singh Nalwa, —Handbook of Nanostructured Biomaterials and Their Applications In Nanobiotechnologyl, American Scientific Publishers,2005.
- 6. Cato T. Laurencin, Temenoff J. S. and Mikos A. G., —Biomaterials: The Intersection of Biology and Materials Sciencel, Pearson, New Delhi, 2009.
- 7. Astrid Sigel, Helmut Sigel and Roland K. O. Sigel, -Bi
- **8.** Instrumental Methods of Analysis, Hobart H. Willard, John A. Dean, Lynne L. Merritt D. Van Nostrand Company.
- 9. Fundamentals of Molecular Spectroscopy by C. N. Banwell, McGraw-Hill.

School	School of Basic and Applied Sciences (SOBAS)
Programme/Discipline	B.Sc. (H) Chemistry
Batch	2024-28
Semester	VIII
Course Title	Analytical Methods in Industry
Course Code	CHM410
Credit	4
Contact Hours	3-0-1
Course Type	Hybrid

Course Objective	Understand the principles and techniques of key analytical
	methods used in industrial processes, such as spectroscopy,
	chromatography, and mass spectrometry.
	Learn how to apply these analytical techniques for quality
	control, process optimization, and product validation in
	various industries.
	Develop the ability to critically evaluate and interpret
	analytical data for decision-making in industrial settings.
	Gain practical experience in using modern analytical
	instruments and software for accurate measurement and
	analysis.
	Explore the role of analytical methods in ensuring
	regulatory compliance, safety, and sustainability in
	industrial operations.
Course Outcome (CO)	After completion of this course, students will be able to
	CO1: Remembering : Students will be able to identify and
	describe fundamental analytical techniques such as
	chromatography spectroscopy and mass spectrometry used
	in industry
	in industry.
	CO2:Understanding: Students will be able to explain the
	operational principles and applications of various analytical
	instruments in quality control and process analysis
	instruments in quarty control and process analysis.
	CO3: Applying: Students will be able to apply appropriate
	analytical methods to solve real world industrial problems
	such as material composition analysis and product
	validation
	COA: Analyzing: Students will be able to analyze industrial
	deta from different analytical techniques to assess product
	quality and troubleshoot manufacturing processes
	quanty and noubleshoot manufacturing processes.
	CO5: Evaluating: Students will be able to evaluate the
	cos. Evaluating. Students will be able to evaluate the
	performance and remaining of different analytical methods
	in industrial settings, ensuring adherence to safety,
	regulatory, and quality standards.

Module	Description	
Ι	Physical Methods of Separation:	
	Boiling and distillation, vapor-liquid equilibria, Rault's law & Henry's law, relative	
	volatility, azeotropic mixtures. Different distillation processes. Classification of filters,	
	Sand filters, filter press, plates & frame press, filter aids, principles of leaf filters.	
	General Principles (Significance, moisture content), Rate of drying (Constant & falling	
	rate period, factors affecting drying), Types of evaporators, jacketed, horizontal and	
	vertical tube evaporators, forced circulation evaporations, entrainment separators	
	(upturned, deflector type, tangential type).	
II	Thermal Methods of Analysis:	
	Thermal Gravimetric Analysis (TGA), Differential Thermal Analysis (DTA),	
	Differential Scanning Calorimetery (DSC), Thermal Mechanical Analysis (TMA).	
	Flow of Heat- Introduction, Conduction (Fourier law, Thermal conductivity, thermal	
	diffusivity thermal insulation & problems), Heat Exchange Equipment.	
Ш	Electro Analytical Techniques:	
	Theory and application of Potentiometery, Voltametry, Polarography, Amperometry,	
	Coulometry and Conductometry	
IV	Analytical Separation techniques:	
	Definition and importance. Different type of separation technique, Solvent extraction.	
	Distillation (simple, fractional and vacuum distillation), Crystallization.	
	Chromatographic separation: Thin layer chromatography (TLC), Column	
	chromatography, Paper chromatography; principle, methodology and application.	
V	Advance method of separation and analysis:	
	Principle methodology and application of High-performance thin layer chromatography	
	(HPTLC), High-performance liquid chromatography (HPLC), Liquid chromatography-	
	mass-spectrometry (LC-MS), Gas chromatography (GC), Gas chromatography-mass-	
	spectrometry (GC-MS), Inductively coupled plasma mass spectrometry (ICP-MS),	
	Lyophilizer, X-ray fluorescence (XRF), Single crystal X-ray diffraction (SCXRD), Super conducting quantum interference device (SOLUD)	
VI	Super conducting quantum interference device (SQUID). Lab	
V I	1 Separation with ion-exchange chromatography	
	1. Separation with ion-exchange enrollatography	
	2. Gravimetric analysis	
	3. Experiment with Gas chromatography	

Evaluation:

Mode of Evaluation Theory

Weightage	Comprehensive and Continuous	End Semester Examination
	Assessment	
	50%	50%

Reference:

- 1. H.H. Willard, L.L. Merrit, J.A. Dean, F. A. Settle: *Instrumental Methods of Chemical Analysis*, Wadsworth Publishing Company, California.
- 2. G. D. Christian: Analytical Chemistry, John Wiley
- 3. N. Y. S.M. Khopkar: *Basic Concepts of Analytical Chemistry*, Wiley Eastern Ltd, New Delhi.
- 4. F. A. Henglein: Chemical Technology (Pergamon).
- 5. R.N. Shrove: The Chemical Process Industries (MGH).
- 6. W.L. Badger and J.T. Bandchero: Introduction to Chemical Engineering (MGH).
- 7. G.H. Morrison & H. Freiser: Solvent extraction in Analytical Chemistry (John Wiley)

Calcal	School of Basic and Applied Sciences (SOBAS)	
School	School of Basic and Applied Sciences (SOBAS)	
Programme/Discipline	B.Sc. (H) Chemistry	
Batch	2024-28	
Semester	VIII	
Course Title	Reagent Chemistry	
Course Code	CHM412	
Credit	4	
Contact Hours	3-0-1	
(L-1-P)		
Course Type	Hybrid	
Course Objective	 Understand the properties, classifications, and functions of chemical reagents in various chemical reactions. Learn the role of reagents in organic, inorganic, and analytical chemistry, focusing on reaction mechanisms and outcomes. Explore the selection and application of appropriate reagents for synthesis, catalysis, and analysis in laboratory and industrial processes. Develop practical skills in handling reagents safely, including preparation, storage, and disposal, in compliance with safety regulations. Analyze the reactivity and efficiency of different reagents to optimize chemical reactions and processes for improved yield and selectivity. 	
Course Outcome (CO)	 After completion of this course, students will be able to: CO1: Remembering: Students will be able to identify and recall the classifications and characteristics of various chemical reagents used in organic, inorganic, and analytical chemistry. CO2: Understanding: Students will be able to explain the mechanisms by which reagents influence chemical reactions and their role in reaction pathways. CO3: Applying: Students will be able to apply appropriate reagents to design and carry out chemical reactions for 	

SYLLABUS

synthesis and analysis in laboratory settings.
CO4: Analyzing : Students will be able to analyze the efficiency, selectivity, and safety of different reagents, comparing their performance in various chemical processes.
CO5: Evaluating : Students will be able to evaluate reagent choices in chemical processes to optimize reactions for industrial or research applications, ensuring safety and environmental compliance.

Module	Description
Ι	Modern Reagents in Organic Synthesis- Complex metal hydrides, Gilman's reagent, Li-
	reagents, 1,3-dithiane, trimethylsilyl iodide, tri-n-butyltin hydride, Woodward and
	Prevost hydroxylation, OsO ₄ , NalO ₄ , DDQ, SeO ₂ , SmI ₂ , coupling reagents (DCC, HOBT,
	EDC.HCl, HATU etc.), phase transfer catalysts, crown ethers, Merrifield resin,
	Peterson's synthesis, Wilkinson's catalyst, Baker yeast, Lipase, organo-boron reagents,
	organo-phosphorus reagents, organo-silicon reagents, organo-sulphur reagents,
	vlides.
II	Cross-coupling reactions: Cross coupling reactions (Heck, Suzuki, Sonogashira,
	Kumada, Negeshi, Stille, Hiyama coupling reactions) and their application in synthesis.
III	Translational Metal Reagents in Organic Synthesis- Application of organotransition
	metals in organic synthesis, Structural and mechanistic aspects (with special thrust on
	Pd), Davies rule., cross-coupling reactions, Ziegler Naata reaction, Olefin metathesis,
	Grubbs reagent, Tebbe's reagent, Pauson-Khand reactions, Volhardt co-trimerisation,
	nontransition metal reagents.
IV	C-H bond activation- Basic introduction (ortho-, meta-, para-C-H bond activation) and its application in organic synthesis.
Refer	ence Books:
1. Hy	droboration - H. C. Brown
2. Bot	ane Reagents - H. C. Brown, A. Pelter, K. Smith.
3. Rel	evant parts from Advanced Organic Chemistry - F.A. Carey and R.J. Sandberg; Vols.
I &	z II.
4. Rel	evant parts from Comprehensive Organic Synthesis - B. M.Trost& I. Fleming
5. Pri	nciples of Organic Synthesis - RO.C. Norman and J. M. Coxon-Blackie.

6. C-H Bond Activation in Organic Synthesis - Jie. J. Lee

Evaluation:

Mode of Evaluation	Theory	
Weightage	Comprehensive and Continuous Assessment	End Semester Examination
	50%	50%

School	School of Basic and Applied Sciences (SOBAS)	
Programme/Discipline	B.Sc. (H) Chemistry	
Batch	2024-28	
Semester	VIII	
Course Title	Natural Products and Bio-organic Chemistry	
Course Code	CHM413	
Credit	4	
Contact Hours (L-T-P)	3-0-1	
Course Type	Hybrid	
Course Objective	 Understand the fundamental concepts of natural products, including their structures, classifications, and biosynthetic pathways. Explore the chemical properties and biological activities of natural compounds, emphasizing their roles in medicine, agriculture, and ecology. Learn techniques for the extraction, isolation, and characterization of natural products using modern analytical methods. Investigate the principles of bio-organic chemistry to understand enzyme mechanisms and the interaction of biomolecules. Develop skills in synthesizing and modifying natural products, focusing on their potential applications in drug development and therapeutic strategies 	

Course Outcome (CO)	After completion of this course, students will be able to:
	CO1: Remembering : Students will be able to identify and classify various natural products based on their chemical structures and functional groups.
	CO2: Understanding : Students will be able to explain the biosynthetic pathways and mechanisms involved in the formation of key natural products.
	CO3: Applying : Students will be able to apply techniques for the extraction, isolation, and characterization of natural products in laboratory settings.
	CO4: Analyzing : Students will be able to analyze the biological activities and pharmacological potential of natural compounds through case studies and literature reviews.
	CO5: Creating : Students will be able to design synthetic routes for natural product derivatives, considering their structural modifications and potential applications in drug development.

Module	Description		
Ι	Basic introduction to Natural Products- Familiarity with methods of structure		
	elucidation, biosynthesis, synthesis and biological activity of alkaloids, terpenoids and		
	steroids.		
II	Total synthesis of few of the natural products- Strychnine, Strychnine, Penicillin V,		
	Reserpine, Vitamin B12, Progesterone, Prostaglandins F2-alpha and E2, Prostaglandins		
	A2 and F2-alpha, Carpanone, Biotin, Periplanone B etc.		
III	Basic Introduction to Bio-organic Chemistry- Molecular models of biological		
	receptors, biomimetic chemistry, design, chemistry behind coagulation, vision, electron		
	transport, biological decarboxylation, biological methylation, synthesis and binding		
	studies of synthetic receptors.		
IV	Chemistry of enzymatic activity- Enzyme catalyzed reactions (examples of		
	nucleophilic displacement on a phosphorus atom), enzymatic action of some common		
	enzymes (chymotrypsin, lysozyme, ribonuclease, carboxypeptidase etc.), coupling of		
	ATP cleavage to endergonic processes.		

V	Application of enzymes- Use of	enzymes in organic synthesis (biocatalysis),
	biotechnological applications of enzy	mes: Enzyme purification, immobilization of
	enzymes, enzyme therapy, enzyme and	recombinant DNA technology.

Reference Books:

- 1. Natural Product Biosynthesis: Chemical Logic and Enzymatic Machinery- Christopher T. Walsh
- The Organic Chemistry of Biological Pathways (2nd Edition)- John E. McMurry; Tadhg P. Begley
- 3. Bioorganic Chemistry- Dugas
- 4. Classics in Total Synthesis: Targets, Strategies, Methods (1st Edition)-Nicolaou, Sorensen.

Evaluation:

Mode of Evaluation	Theory	
Weightage	Comprehensive and ContinuousEnd Semester ExaminationAssessment	
	50%	50%

School	School of Basic and Applied Sciences (SOBAS)	
Programme/Discipline	B.Sc. (H) Chemistry	
Batch	2024-28	
Semester	VIII	
Course Title	Project/Dissertation	
Course Code	CHM416	
Credit	4	
Contact Hours (L-T-P)	3-0-1	
Course Type	Hybrid	
Course Objective	 Develop critical research skills by designing and conducting independent research projects on a relevant topic in the field of study. Enhance analytical thinking and problem-solving abilities through the evaluation of existing literature and 	

	data collection methods.	
	Apply theoretical knowledge and practical skills to real-	
	world challenges, demonstrating the ability to integrate	
	concepts learned throughout the program.	
	Communicate research findings effectively through	
	written reports and oral presentations, adhering to	
	academic standards and ethical guidelines.	
	Foster self-directed learning and time management	
	skills by managing project timelines, resources, and	
	collaboration with supervisors or peers.	
Course Outcome (CO)	After completion of this course, students will be able to:	
course outcome (CO)		
	CO1. Remembering : Students will be able to identify and	
	define key research methodologies and concepts relevant to	
	their chosen project tonic	
	and the set of the set	
	CO2: Understanding: Students will be able to explain the	
	significance of their research question and the context within	
	the existing body of literature	
	the existing body of inclutio.	
	CO3. Annlying: Students will be able to annly appropriate	
	research methods and techniques to collect and analyze data	
	effectively for their project	
	CO4: Analyzing: Students will be able to analyze research	
	findings critically drawing meaningful conclusions and	
	implications from the data collected	
	impleations from the data concered.	
	CO5: Evaluating : Students will be able to evaluate the	
	strengths and limitations of their research providing	
	recommendations for future studies or practical applications	
	hased on their findings	

Module	Description
Ι	The students will be assigned to Supervisor for research work in a recent field of research.
II	They will prepare a review note and synopsis for the projected work
III	They will carry out research work and record the data
IV	They will analyse and report the data to supervisor
V	They will write thesis/paper at the end of the work

Reference Books:

- 1. Natural Product Biosynthesis: Chemical Logic and Enzymatic Machinery- Christopher T. Walsh
- The Organic Chemistry of Biological Pathways (2nd Edition)- John E. McMurry; Tadhg P. Begley
- 3. Bioorganic Chemistry- Dugas
- 4. Classics in Total Synthesis: Targets, Strategies, Methods (1st Edition)-Nicolaou, Sorensen.

Evaluation:

Mode of Evaluation	Theory		
Weightage	Comprehensive and Continuous Assessment	End Semester Examination	
	50%	50%	