

SCHOOL OF LIFE SCIENCE & BIOTECHNOLOGY

DEPARTMENT OF BIOLOGICAL SCIENCES

B.Sc. BIOCHEMISTRY (3 YEARS) PROGRAMME COURSE STRUCTURE & PROPOSED SYLLABUS TOTAL CREDITS –154

ADAMAS UNIVERSITY, KOLKATA, SCHOOL OF LIFE SCIENCE AND BIOTECHNOLOGY

VISION OF THE UNIVERSITY

To be an internationally recognized university through excellence in <u>inter-</u> <u>disciplinaryeducation,researchandinnovation,preparingsociallyresponsiblewell-</u> <u>groundedindividuals</u>contributingtonation building.

MISSION STATEMENTS OF THE UNIVERSITY

M.S 01: Improve employability through futuristic curriculum and progressive pedagogy with cutting-edge technology

M.S 02: Foster outcomes based education system for continuous improvement in education, research and all allied activities

M.S 03: Instill the notion of lifelong learning through culture of research and innovation

- M.S 04: Collaborate with industries, research centers and professional bodies to stay relevant and up to date.
- M.S 05: Inculcate ethical principles and develop understanding of environmental and social realities.

CHANCELLOR / VICE CHANCELLOR

ADAMAS UNIVERSITY, KOLKATA, SCHOOL OF LIFE SCIENCE AND BIOTECHNOLOGY

VISION OF THE SCHOOL

To achieve global standard and <u>excellence in research</u>on various <u>interdisciplinary</u> <u>andmultidisciplinary domains</u>of biological sciences through <u>biotechnological innovation</u>along with <u>producing global citizens</u>as graduates by <u>intensive teaching learning process</u>who would be vanguard to <u>sustainable societal development</u>.

MISSION STATEMENTS OF THE SCHOOL

M.S 01: To disseminate knowledge of life science and biotechnology for scholarlyprogression, intellectual development and strive for innovation.

M.S 02: To enable latest skill sets in the domain of microbiology, biotechnology, biochemistry (biological sciences) with ability to evolve and engage in learn-unlearn and relearn, being a lifelong learner and use the knowledge to other multi-disciplinary programms.

M.S 03: To establish state of art infrastructure and research ambiance in attracting the best minds to serve under the single roof of school of life science and biotechnology in undertaking scientific investigation of social relevance.

M.S 04: To inculcate values, culture along with scientific knowledge to foster the spirit of self- reliance and entrepreneurship development.

knowapas

DEAN / SCHOOL CONCERNED

ADAMAS UNIVERSITY, KOLKATA SCHOOL OF LIFE SCIENCE AND BIOTECHNOLOGY

VISION OF THEDEPARTMENT

To achieve <u>excellence in education and research in biochemistry</u>for <u>societal</u> <u>development</u>through <u>innovation</u>and producing <u>technologically sound graduates</u>as <u>globalcitizen</u>fostering <u>life-long learning.</u>

MISSION STATEMENTS OF THE DEPARTMENT

M.S01: Adoptandimplementlatest curriculum inbiochemistry with futuristic approach and innovative pedagogy fostering knowledge, intellectual and skill development.

M.S02:Toenableandenhanceskillinbiochemistrysetsthroughrigoroustrainingand research through multidisciplinary approach.

M.S03:Tocaterprofessionalandsocietalneedofcutting-edgeresearchinbiochemistry through collaboration and industry-academic partnership.

M.S04:Toinculcatevalues,culturealongwithknowledgeaboutbiochemistrytofosterthe spirit of self-reliance and entrepreneurship development.

Seijan Holdar

Rudapand Sty

DEAN / SCHOOL CONCERNED

HOD

ADAMAS UNIVERSITY, KOLKATA SCHOOL OF LIFE SCIENCE AND BIOTECHNOLOGY

	Name of the Programme: <u>B.Sc. Biochemistry (Hons.)</u>
	PROGRAMME EDUCATIONAL OBJECTIVES (PEO)
PEO 01	: Acquire basic theoretical and practical domainknowledge.
PEO 02	:Acquaintedwithtoolsandtechnologyrelatedtothefield ofstudy.
PEO 03	:Abilitytodoidentifyresearchgaps,comprehendfundamentals,and specialize in the domain.
PEO 04	:Developasprofessionalaspirantsandsustainablelearners.
PEO 05	: Global outlook with imbibed human values.
Serijan	And apard Sty

HOD

DEAN / SCHOOL CONCERNED

ADAMAS UNIVERSITY, KOLKATA SCHOOL OF LIFE SCIENCE AND BIOTECHNOLOGY

Name of the Programme: B.Sc. Biochemistry (Hons.)

GRADUATE ATTRIBUTE / PROGRAMME OUTCOME (PO)

GA 01/ PO 01: Fundamental Knowledge: Strong fundamental knowledge in basic and applied field of biochemistry.

GA 02/ PO 02: Critical Thinking: Ability to correlate between courses and develop critical/logical thinking.

GA 03/ PO 03: Skill: Develop skill set related to biochemistry and allied fields.

GA 04/ PO 04: Technical Knowledge: Familiarized with classical as well as modern tools and techniques in biochemistry.

GA 05/ PO 05: Logical Thinking: Ability to identify scientific research gaps and problems pertaining to biochemistry and allied fields.

GA 06/ PO 06: Problem identification ability: Explore the acquired knowledge and skills of biochemistry to identify approaches for suitable solution.

GA 07/ PO 07: Analytical Knowledge Ability to retrieve biological data for a meaningful solution.

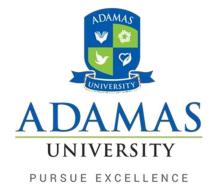
GA 08/ PO 08: Career goals: Decide upon career path, force the challenges and develop professional aspirations.

GA 09/ PO 09: Teamwork: Uphold integrity and collaborative approach in workplace.

GA 10/ PO 10: Sustainable Development to environment: To accept and implement learning towards sustainable development.

GA 11/ PO 11: Development to society: Practice ethical philosophies and systems in creating and partnering a progressive society.

GA 12/ PO 12: Development to humanity: Develop as global citizen to contribute in the greater benefits of humanity.


Seijan Holdar

Rudapand Sty

DEAN / SCHOOL CONCERNED

DEPARTMENT OF BIOCHEMISTRY

HOD

KOLKATA

ADAMASUNIVERSITY SCHOOL OF LIFE SCIENCE AND BIOTECHNOLOGY

B.Sc. Biochemistry

(Program Code: BIC3302)

(2022-25)

ADAMAS UNIVERSITY, KOLKATA

Type of TheCour s e	Old Course Code	Revised Course Code	CourseName	Contact Hours	L	Т	Р	Credit
CORE Theory	SBC31101	BIC11001	Molecules of Life	1	0	4		
CORE Practical	SBC31201	BIC12002	Molecules of Life Lab	45	0	0	3	2
CORE Theory	SBC31103	BIC11003	Protein	60	3	1	0	4
CORE Practical	SBC31203	BIC12004	Protein Lab	45	0	0	3	2
AECCI	HEN31105	ENG11057	English Language and Literature	60	2	0	0	2
FOUNDATI ON	SBC31107	DGS11001	DesignThinking	30	2	0	0	2
GenericE lective 1(GE1*) Theory	SBN31105 /SBT31105 /SCY31105 /SPS31109	BOT11001 /ZOL11001 /CHM11151 /PSG13004	Any one of the following: Elective Botany I /ElectiveZoology I / ElectiveChemistryI/ *Elective General Psychology	60	3	1	0	4
GenericE lective 1(GE1) Practical	SBN31205 /SBT31205 /SCY31205	BOT12002 /ZOL12002 /CHM1215 2	Corresponding Practical (anyone): ElectiveBotanyI Lab/ Elective Zoology I Lab /ElectiveChemistryILab/	45	0	0	3	2
Total			·					22

B.Sc.Biochemistry Semester-I

*6 credit course for non-lab-based subject

B.Sc.BiochemistrySemester-II

Type of the Cours e	Old Course Code	Revised Course Code	CourseName	Contact Hours	L	Т	Р	Credit
CORE Theory	SBC31102	BIC11005	Enzymes	60	3	1	0	4
CORE Practical	SBC31202	BIC12006	Enzymes Lab	45	0	0	3	2
CORE Theory	SBC31104	BIC11007	Human Physiology	60	3	1	0	4
CORE Practical	SBC31204	BIC12008	Human PhysiologyLab	45	0	0	3	2
AECCII Theory	SGY31106	EVS11112	Environmental Science	30	3	1	0	2
FOUNDATIO N	SBC31402	EIC11001	Venture Ideation	30	3	0	0	2
GenericEle ctive 2 [#] (GE2*) Theory	SBN31106 /SBT3110 6 /SPS3110 9	BOT11003 /ZOL1100 3 /PSG1300 7/CHM111 53	Any one of the following: Elective Botany II /Elective ZoologyII/ *ElectiveApplied Psychology /Elective Chemistry II	60	3	1	0	4
Generic Elective 2 [#] (GE2*) Practical	SBC31206 /SBT3120 6	BOT12004 /ZOL1200 4/CHM121 54	Corresponding Practical (anyone): Elective Botany II Lab /Elective Zoology II Lab/ Elective Chemistry Lab II	45	0	0	3	2
Total								22

*6 crecdit course for non-lab-based subject

B.Sc.Biochemistry Semester-III

Type of the Cours e	Old Course C ode	Revised Course Code	CourseName	Contact Hours PerW eek	L	Т	Р	Credit
CORE Theory	SBC32101	BIC11010	Metabolism of Carbohydrates and Lipids	60	3	1	0	4
CORE Practical	SBC32201	BIC12011	Metabolism of Carbohydrates and Lipids Lab	45	0	0	3	2
CORE Theory	SBC32103	BIC11012	Cell Biology	60	3	1	0	4
CORE Practical	SBC32203	BIC12013	Cell Biology Lab	45	0	0	3	2
CORE Theory	SBC32105	BIC11014	Metabolism of Amino acids and Nucleotides	60	3	1	0	4
CORE Practical	SBC32205	BIC12015	Metabolism of Amino acids and Nucleotides Lab	45	0	0	3	2
FOUNDATION Skill Enhancement CourseI (SECI) Theory	SBC32109/ SBC32111	BIC11016/ BIC11017	Tools and Techniquesin Biochemistry /Clinical Biochemistry	30	2	0	0	2
FOUNDATION	SBC32601	SOC14100	CommunityService	-	-	-	-	1
FOUNDATION	SBC32115	IDP14001	Interdisciplinary Project	30	2	0	0	3
Generic Elective3 [#] (GE3*) Theory	ECS32121/ SCY32107/ SMA32121	CSE11641/ CHM1115 1/ SDS11506	Any one of the following: Elective Computer Science I/ Elective Chemistry I / Elective Statistics I*/	60	3	1	0	4
Generic Elective 3 [#] (GE3*) Practical	ECS32221/ SCY32207	CSE12642/ CHM12152	Corresponding Practical (anyone): Elective Computer Science I Lab/ Elective Chemistry I Lab	45	0	0	3	2
Total								30

B.Sc.Biochemistry Semester-IV

		1						
Type of theCours e	Old CourseC ode	Revised Course Code	CourseName	Contact Hours PerW eek	L	Т	Р	Credi t
CORE Theory	SBC32102	BIC11018	Gene organization replication and repair	60	3	1	0	4
CORE Practical	SBC32202	BIC12019	Gene organization replication and repair Lab	45	0	0	3	2
CORE Theory	SBC32104	BIC11020	Immunology	60	3	1	0	4
CORE Practical	SBC32204	BIC12021	ImmunologyLab	45	0	0	3	2
CORE Theory	SBC32106	BIC11022	Membrane Biology and Bioenergetics	60	3	1	0	4
CORE Practical	SBC32206	BIC12023	Membrane Biology and Bioenergetics Lab	45	0	0	3	2
FOUNDATI ON SkillEnhance ment Course II(SECII) Theory	SBC32110 /SBC32112	BIC11024/ BIC11025	Any one of the following: Protein Purification Techniques/ Recombinant DNA Technology	30	2	0	0	2
FOUNDATI ON		PSG11021	Human Values and Professional Ethics	30	2	0	0	2
Generic Elective4 [#] (GE4*) Theory	ECS32122 /SCY32108 /SMA32112	CSE11643/ CHM11153 / SDS11507	Any one of the following: Elective Computer Science II/ Elective Chemistry II/ Elective Statistics II* /	60	3	1	0	4
GenericElecti ve 4 [#] (GE4*) Practical	ECS32222/ SCY32208	CSE11644/CH M 12154	Corresponding Practical (anyone): Elective Computer Science II Lab/ Elective Chemistry Lab II	45	0	0	3	2
Total								28

		ADAMAS UNI	VERSITY					
		B.Sc. Biochemistry	y Semester-V					
Type ofCour se	Old Course Code	Revised Course Code	Course Name	Contact Hours Per Week	L	Т	Р	Cre dit
CORE Theory	SBC33101	BIC11026	Concept of Genetics	60	3	1	0	4
CORE Practical	SBC33201	BIC12027	Concept of Genetics Lab	45	0	0	3	2
CORE Theory	SBC33103	BIC11028	Gene Expression and Regulation	60	3	1	0	4
CORE Practical	SBC33203	BIC12029	Gene Expression and Regulation Lab	45	0	0	3	2
CORE Discipline Specific ElectiveI (DSEI) Theory	SBC33105 /SBC33107 /SBC33109/	BIC11030/ BIC11032/ BIC11034	Any one of the following: Bioinformatics/ Basic Microbiology/ Molecular Basis of non- infectious human diseases	60	3	1	0	4
CORE Discipline SpecificElective I(DSEI) Practical	SBC33205 /SBC33207 /SBC33209/	BIC12031/ BIC12033/ BIC12035	Corresponding Pract ical(any one): Bioinformatics Lab/ Basic Microbiology Lab/ Molecular Basis of non- infectious human diseasesLab	45	0	0	3	2
CORE Discipline SpecificElectiveII(D SEII) Theory	SBC33111/ SBC33113/ SBC33115	BIC11036/ BIC11038/ BIC11040	Any one of the following: Molecular Basis of Infectious Human Diseases/ Medical Microbiology/ Nutritional Biochemistry	60	3	1	0	4
CORE Discipline SpecificElectiveII(D SEII) Practical	SBC33211/ SBC33113 /SBC33115	BIC12037/ BIC12039/ BIC12041	Corresponding Practi cal (anyone): Molecular Basis of Infectious Human Diseases Lab/ Medical Microbiology Lab/ Nutritional Biochemistry Lab	45	0	0	3	2
FOUNDATI ON	SBC33601	BIC14042	IndustryInternship	-	-	-	-	2
Total								26

*6 credit course for non-lab based subject Note:OfferofDSEcoursesmayvaryfromyeartoyearbasedonavailabilityoffaculty

		ADAMA	S UNIVERSITY					
		B.Sc.Bioche	emistrySemester-VI					
Type of the cours e	Old Course Code	Revised Course Code	CourseName	Cont actH ours	L	Т	Р	Cred it
CORE Theory	SBC33102	BIC11043	Genetic Engineering and Biotechnology	60	3	1	0	4
CORE Practical	SBC33202	BIC12044	Genetic Engineering and Biotechnology Lab	45	0	0	3	2
CORE Theory	SBC33104	BIC11045	Hormones: Biochemistry and Function	60	3	1	0	4
CORE Practical	SBC33204	BIC12046	Hormones Biochemistry and Function Lab	45	0	0	3	2
CORE DisciplineSpecificElective III(DSEIII) Theory	SBC33106 /SBC33108/ SBC33110	BIC11047/ BIC11049/ BIC11051	Any one of the following: Plant Biochemistry / Advanced Cell Biology / Research Methodology*	60	3	1	0	4
CORE DisciplineSpecificElective III(DSEIII) Practical	SBC33206 / SBC33208	BIC12048 /BIC12050	Corresponding Practical (anyone): Plant Biochemistry Lab / Advanced Cell Biology Lab	45	0	0	3	2
	SBC33712	BIC15052	Dissertation	4	0	0	4	6
FOUNDATI ON	SBC33302	BIC15053	Seminaron on Contemporary Research in Biochemistry					2
Total								26

Total credit distribution semester-wise:

Semester	Ι	II	III	IV	V	VI	Total
Credits	22	22	30	28	26	26	154

BIC 11001	Molecules of Life (Theory)	L	Т	Р	C		
Version 1.0	Contact Hours: 60	3	1	0	4		
Pre-requisites/Exposure	Knowledge of Organic Chemistry at 10+2 level						
Co-requisites	-						

Course Objectives

- 1. To gain a deeper understanding structures of different types of carbohydrates.
- 2. To acquire the knowledge structures of different types of aminoacids.
- 3. To acquire the knowledge about the different classes of lipids.
- 4. To gain the knowledge about different types of nucleicacid.
- 5. To understand the properties of water and its essentiality in biochemistry.

Course Outcomes

On completion of this course, the students will be able to

- CO1. **Describe** the structure and functions of different type of sugars.
- CO2. Identify different types of aminoacids.
- CO3. Construct the knowledge about structures oflipids.
- CO4. Illustrate the structure of DNA, RNA and their biological significances.
- CO5. Demonstrate the properties of water during the characterization ofbiomolecules.

Catalog Description

Life is a condition through which living organisms can be differentiated from non-living matters. For example growth, reproduction are the essential physiological phenomena of living organism. To support those physiological characteristics, some molecules are very much essential, which are

considered as "molecules of life". The learning of the detailed structures of those molecules are necessary for understanding the key of the life. So the course consists of the structure of carbohydrates(energy source), amino acids(structural unit of protein), water(a major partof protoplasm of the cell), lipids(bulding block of the cell) and nucleotides(responsible for construction of energy currency and geneticmaterial).

Course Content

Unit I: Carbohydratesandglycobiology 12 Lecture hours ſ Monosaccharides - structure of aldoses and ketoses, ring structure of sugars, conformations of sugars, mutarotation, anomers, epimers and enantiomers, structure of biologically important sugar derivatives, oxidation of sugars. Formation of disaccharides, reducing and nonreducing disaccharides. Polysaccharides - homo- and heteropolysaccharides, structural and storage polysaccharides. Structure and role of proteoglycans, glycoproteins and glycolipids(gangliosides and lipopolysaccharides).Carbohydrates as informational molecules, working with carbohydrates.

[12 Lecturehours]

Building blocks of lipids - fatty acids, glycerol, ceramide.Storage lipids - triacyl glycerol and waxes.Structural lipids in membranes – glycerophospholipids, galactolipids and sulpholipids, sphingolipids and sterols, structure, distribution and role of membrane lipids.Plantsteroids.Lipids as signals, cofactors and pigments.

Unit IIIAminoacids

Structure and classification, physical, chemical and optical properties of amino acids

Unit IVNucleic acids

Nucleotides - structure and properties. Nucleic acid structure – Watson-Crick model of DNA. Structure of major species of RNA - mRNA, tRNA and rRNA.Nucleic acid chemistry - UV absorption, effect of acid and alkali on DNA. Other functions of nucleotides - source of energy, component of coenzymes, second messengers.

UnitV: Water

[12 Lecturehours]

Unique properties, weak interactions in aqueous systems, ionization of water, buffers, water as a reactant and fitness of the aqueous environment.

Reference Books

- 1.Lehninger: Principles of Biochemistry (2013) 6th ed., Nelson, D.L. and Cox, M.M., WH Freeman and Company (New York), ISBN:13: 978-1-4641-0962-1 / ISBN:10:1-42923414-8.
- 2.Biochemistry (2011) 4th ed., Donald, V. and Judith G.V., John Wiley & Sons AsiaPvt. Ltd. (New Jersey), ISBN:978-1180-25024.
- 3. Biochemistry, LubertStryer, 8th Edition.
- 4. Organic Chemistry, Vol 1 &2., IL Fina:
- 5. Chemistry of Nucleic acids, Adams.
- 6.Organic Chemistry, Nasipuri.
- 7. Biochemical Calculations, IrwinSegel

Modes of Evaluation: Quiz/Assignment/ presentation/ extempore/ Written Examination Examination Scheme:

Components	Mid Term	Attendance	Class Assessment	End Term
Weightage (%)	20	10	30	40

UnitII: Lipids

[12 Lecturehours]

[12 Lecturehours]

	Mapping between COs and Pos	
	Course Outcomes (COs)	Mapped Program Outcomes
CO1	describe the structure and functions of different type of sugars.	PO1, PO2, PO6
CO2	identify different types of amino acids.	PO1, PO2, PO3, PO4
CO3	illustrate the knowledge about structures of lipids.	PO1, PO2, PO5, PO7
CO4	explain the structure of DNA, RNA and their biological significances.	PO1, PO2, PO8, PO9
CO5	demonstrate the properties of water during the characterization of biomolecules.	PO1, PO2, PO6, PO7

Relationship between the Course Outcomes (COs) and Program Outcomes (POs)

		Fundamental Knowledge	Critical Thinking	Skill	Technical Knowledge	Logical Thinking	Problem Identification Ability	Analytical Knowledge	Career Goals	Team Work	Sustainable Development to Environment	Development to Society.	Development to Humanity
Course Code	Course Title	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
BIC11001	Molecules of Life	3	3	1	1	2	2	2	1	1	-	-	-

1=weakly mapped


2= moderately mapped

3=strongly mapped

Model Question Paper

Name:	
-------	--

Enrolment No:

Course: BIC 11001 – Molecules of Life

Program: B.ScBiochemistry Semester:Odd 2020-21

Time: 03 Hrs. Max. Marks:40

Instructions:

Attempt any three questions from Section A (each carrying 5 marks); any Two Questions from Section B (each carrying 10 marks).

	Section A		
1.	Discuss role of phospholipids in membrane constitution. (R)	5	CO3
2.	Compare dextrorotatory and levorotatory sugars. (U)	5	C01
3.	Defin syn and anti configuration of nucleotides. (R)	5	CO4
4.	How will you evaluate rancidity of a fat sample? (U)	5	CO3
	SECTION B (Attempt any Two Questions)		
5.	Explain mutarotation. Justify its occurrence in aqueous medium. (An)	10	CO1
6.	 a) Histidine and lysine both are basic amino acids, still the nature of their titration curves are different, that is also reflected in their biological significance also-justify. (An) b) An aqueous solution of D-galactose has specific rotation of +80.2⁰ after standing for some hours. The specific rotation of α-D-galactose and β-D-galactose are +150.7⁰ and +52.8⁰, respectively. Evaluate the proportions of α and β-D galactose in the mixture. (An) c) Distinguish between dextrin and dextran. (R) 	4 4 2	CO2 CO1 CO1

7.	 1. a) The saponification number of a sample of butter fat is 250 and iodine number of the butter fat is 68. Calculate the average molecular weight in the present triacylglycerols and the number of double bonds present in the butter fat sample.(Hint: atomic weight of I is=126.9) b) Write down the structure and IUPAC name of following fatty acid: Ricinoleicacid(18:1Δ⁹C-8 D- hydroxylated) c) Design an experiment: To determine the Reichert-Meissl and Polenske number from a same fat sample. (Ap) 	4 2 4	CO3
----	--	-------------	-----

BIC12002	Molecules of Life Lab(Practical)				C
Version 1.0	Contact Hours: 45	0	0	3	2
Pre-requisites/Exposure	ites/Exposure Knowledge of Organic Chemistry at 10+2 level				
Co-requisites	Theory of Molecular biology				

Course Objectives

- 1. To understand the presence of different types of carbohydrates in different samples.2.
- To understand the presence of amino acids in asolution.
- 3. To characterize thelipids
- 4. To gain the knowledge about different types of nucleic acids.
- 5. To understand the properties ofwater.

Course Outcomes

On completion of this course, the students will be able to

- CO1. **Describe** the chemical behaviour of different type of sugars
- CO2. Identifyphysical and chemical properties of amino acids
- CO3. Develop the knowledge about characteristics oflipids.
- CO4. **Illustrate** the chemical behavior of DNA and RNA for distinguishing them from each other.
- CO5. Define the properties of water during the characterization ofbiomolecules.

Catalogue Description

Life is a condition through which living organisms can be differentiated from non-living matters. For example growth, reproduction are the essential physiological phenomena of living organism.

Tosupportthosephysiologicalcharacteristics, somemolecules are very much essential, which are considered as "molecules of life". The learning of the detailed structures of those molecules are necessary for understanding the key of the life. So the course consists of the identification of carbohydrates (energy source), amino acids (structural unit of protein), water (a major part of protoplasm of the cell), lipids (bulding block of the cell) and nucleotides (responsible for construction of energy currency and genetic material) by several qualitative tests.

Course Content

- 1. Safety measures in laboratories and Properties of Water. [5hours]
- 2. Preparation of normal and molar solutions, Preparation of Buffer. [5hours]
- **3.** Qualitative Analysis of Carbohydrates. **[5hours]**
- 4. Qualitative Analysis of Proteins. [10hours]
- 5. Qualitative Analysis of Lipids. [10 hours]
- 6. Assay of Salivary Amylase. [10hours]
- 7. Estimation of vitamin C. [10hours]
- 8. Nucleic acid Estimation. [5 hours]

Reference Books

- 1. Introduction to Practical Biochemistry: by Sawhney and Singh Biochemistry (2011) 4red.,
- 2. Advanced Practical Chemistry; Subhas Chandra Ds
- 3. Organic Chemistry, Vol 1 &2., ILFinar.
- 4. Chemistry of Nucleic acids, Adams
- 5. Organic Chemistry, Nasipuri.
- 6. Biochemical Calculations, IrwinSegel

Modes of Evaluation: Quiz/Assignment/ presentation/ extempore/ Written Examination Examination Scheme:

Components	Mid Term	Attendance	Class Assessment	End Term
Weightage (%)	20	10	30	40

Relationship between the Course Outcomes (COs) and Program Outcomes (POs)

	Mapping between COs and Pos				
	Course Outcomes (COs)	Mapped Program Outcomes			
CO1	describe the chemical behaviour of different type of sugars	PO1, PO2, PO3, PO4, PO7			
CO2	explain physical and chemical properties of amino acids	PO1, PO2, PO3, PO4, PO5, PO7			
CO3	demonstrate the knowledge about characteristics of lipids	PO1, PO2, PO4,PO6, PO7,PO9			
CO4	illustrate the chemical behavior of DNA and RNA for distinguishing them from each other.	PO1, PO2, PO5, PO6, PO7, PO9			
C05	define the properties of water during the characterization of biomolecules	PO1, PO2, PO3, PO4, PO5, PO6, PO7			

BIC12002	Course Code	
Molecules of Life Lab	Course Title	
3	PO1	Fundamental Knowledge
3	PO2	Critical Thinking
3	PO3	Skill
3	PO4	Technical Knowledge
2	PO5	Logical Thinking
3	PO6	Problem Identification Ability
3	PO7	Analytical Knowledge
ı	PO8	Career Goals
2	PO9	Team Work
	PO10	Sustainable Development to Environment
1	PO11	Development to Society.
		Development to Humanity

1=weakly mapped 2= moderately mapped 3=strongly mapped

Model Question Paper

Name:	
Enrolment No:	ADAMAS
Enronment No:	UNIVERSITY Pursue excellence

Course: BIC12002 –Molecules of Life Lab

Program: B.ScBiochemistry Semester:Odd 2020-21 Time: 03 Hrs. Max. Marks:40

Instructions:

Attempt any two questions from **Section A** (each carrying 10 marks); Section **B** (each carrying 10 marks)isCompulsory.

Section A (Attempt any Two)						
1.	Identify the molecules from thegivensampleAandB.(Ap) and Write the resultsalong with the experimental procedure in detail.(An)	4 4 2	CO1, CO2, CO3,CO4			
2.	Estimate the quantity of amino acid from the given sample (Ap)and detail the experimental procedure, observation and inference.(An)	4 4 2	CO2			
3.	Estimate the quantity of Vitamin C from the given sample(Ap) and detail the experimental procedure , observation and inference.(An)	4 4 2	CO5			
	SECTION B (Compulsory)					
4.	Viva-Voce(U/An/Ap/R)	10	CO1, CO2,CO3, CO4,CO5			
5.	Laboratory Note Book (U/An/Ap/Ev)	10	CO1, CO2,CO3, CO4,CO5			

BIC11003	PROTEIN (THEORY)	L	Т	Р	С
Version 1.0	Contact Hours - 60	3	1	0	4
Pre-requisites/Exposure	PLUS TWO (12 th) LEVEL BIOLOGY				
Co-requisites					

Course Objectives

- 1.To provide students the basic understanding of structure and properties of amino acids, peptides and polypeptides.
- 2. To provide in depth knowledge of structural and functional diversity ofproteins.
- 3. To describe protein purification techniques along with otherbiophysical techniques characterization.
- 4. To give general overview of protein databases and some specialproteins.

Course Outcomes

On completion of this course, the students will be able to

- CO1. Explain various structural components of amino acids, peptides and polypeptides.
- CO2. Summarisestructural features of protein and compare their functional aspects.
- CO3. Describe different techniques for protein purification.
- CO4: **Illustrate** the role of different protein databases.
- CO5: Compare the structure and function of some special proteins.

Catalogue Description

The core-course of 'protein' will help to understand the classification, structure and properties of amino acids. This course is a step-by-step journey from the basic to modern concepts of protein biochemistry. Furthermore, the application of biophysical methods along with bioinformatics databaseshavealsobeenincludedforathoroughunderstandingofthesubject.Allthelectureswill be devoted on discussions of basic theories and advanced topics, focusing on practical implementation of knowledge. Classes will be conducted by lecture as well as power point presentation, audio visual virtual lab session as per requirement. The tutorials will enable the students with problem-solving ability led by the course coordinator. Students will perceive the basic concepts of the subject via exercise and discussions with thecoordinator.

Course Content	
Protein (BIC11003)	

Unit 1-Introduction to amino acids, peptidesandproteins: [6 LectureHours]

Amino acids and their properties - hydrophobic, polar and charged. Biologically important peptides - hormones, antibiotics and growth factors. Multimeric proteins, conjugated proteins and metallo proteins. Diversity of function

Unit 2-Extraction of proteins for downstream processing and Separation techniques: [6 Lecture Hours]

Solubilization of proteins from their cellular and extracellular locations. Use of simple grinding methods, homogenization, ultrasonication, French press and centrifugation. Ammonium sulphate fractionation, solvent fractionation, dialysis and lyophilization. Ion-exchange chromatography, molecular sieve chromatography, hydrophobic interaction/reverse phase chromatography,affinity chromatography, HPLC and FPLC

Unit 3-Characterization of proteins: [6 Lecture Hours]

Determination of purity, molecular weight, extinction coefficient and sedimentation coefficient, IEF, SDS-PAGE and 2-D electrophoresis.

Unit 4-Covalent structure of proteins: [6 Lecture Hours]

Organization of protein structure into primary, secondary, tertiary and quaternary structures. Nterminal and C-terminal amino acid analysis. Sequencing techniques - Edman degradation.Generation of overlap peptides using different enzymes and chemical reagents.Disulfide bonds and their location. Mass spectrometric analysis, tandem MS. Solid phase peptidesynthesis

Unit 5-Three dimensional structures of proteins: [6 Lecture Hours]

Nature of stabilizing bonds - covalent and non-covalent. Importance of primary structure in folding. The peptide bond - bond lengths and configuration.Dihedral angles psi and phi.Helices, sheets and turns.Ramachandran map. Techniques used in studying 3-D structures - X-ray diffraction and NMR. Motifs and domains. Tertiary and quaternary structures. Structures of myoglobin and haemoglobin

Unit 6-Protein folding and conformational diseases: [8 Lecture Hours]

Denaturation and renaturation of Ribonuclease A. Introduction to thermodynamics of folding and molten globule. Assisted folding by molecular chaperones, chaperonins and PDI.Defects in protein folding. Diseases –Alzheimer's and Prion based.

Unit 7-Introduction to protein structure databases: [8 Lecture Hours]

Protein sequence and structure databases (PDB). Use of sequence and domain information. Viewing protein structures using *in silico* tools.

Unit 8-Myoglobin, haemoglobin and Specialized proteins -[9 Lecture Hours]

Antibodies and actin-myosin motors

Oxygen binding curves, influence of 2,3-BPG, CO2 and Cl⁻. Hill plot. Cooperativity between subunits and models to explain the phenomena - concerted and sequential models.Haemoglobin disorders.

Unit 9-Membrane proteins: [6 Lecture Hours]

Integralandmembraneassociatedproteins.Hydropathyplotstopredicttransmembranedomains. Significance of membrane proteins -bacteriorhodopsin.

Textbook:

1. Lehninger: Principles of Biochemistry (2013) 6thed., Nelson, D.L. and Cox, M.M., W.H.

Freeman and Company (New York), ISBN:13: 978-1-4641-0962-1 / ISBN:10:1-4292-3414-8.

Reference books:

1.Physical Biochemistry (2009) 2nd ed., Sheehan, D., Wiley-Blackwell (West Sussex), ISBN: 9780470856024 / ISBN:9780470856031.

2. The Tools of Biochemistry (1977; Reprint 2011) Cooper, T.G., Wiley India Pvt. Ltd. (New Delhi), ISBN:978-81-265-3016-8.

Modes of Evaluation: Quiz/Assignment/ presentation/ extempore/ Written Examination Examination Scheme:

Components	Mid Term	Attendance	Class Assessment	End Term
Weightage (%)	20	10	30	40

Relationship between the Course Outcomes (COs) and Program Outcomes (POs)

	Mapping between COs and POs							
	Course Outcomes (COs)	Mapped Program Outcomes						
CO1	explain various structural components of amino acids, peptides and polypeptides	PO1						
CO2	summarise structural features of protein and compare their functional aspects.	PO1, PO2						
CO3	analyse and choose between different techniques for protein purification.	PO1, PO2, PO3, PO4, PO7						
CO4	illustrate the role of different protein databases	PO1, PO2, PO5, PO6, PO7						
CO5	compare the structure and function of some special proteins	PO1, PO2, PO4, PO5, PO7						

		Fundamental Knowledge	Critical Thinking	Skill	Technical Knowledge	Logical Thinking	Problem Identification Ability	Analytical Knowledge	Career Goals	Team Work	Sustainable Development to Environment	Development to Society.	Development to Humanity
Course Code	Course Title	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
BIC11003	PROTEIN (THEORY)	3	3	3	3	2	2	3	-	-	-	-	-

1=weakly mapped

2= moderately mapped

3=strongly mapped

Name:

Enrolment No:

Course: BIC11003 - PROTEIN (THEORY) Program:B.Sc. Biochemistry Semester:Odd 2019-20

Time: 03Hrs. Max. Marks:40

Instructions:

Attempt any **four** questions from **Section A** (each carrying 5 marks); any **two** questions from **Section B** (each carrying 10 marks).

SEC	CTION A (Attemptany Four questions)		
1.	What is peptide bond? Explain with a suitable reaction. (R)	2+3	CO1
2.	Classify amino acids based on their side chains. 'W' stands for which amino acid? (U)	4+1	CO2
3.	What are the four levels of protein structure? Differentiate between alpha helix and beta sheet. (R)	4	CO3
4.	Enlist 3 important techniques for protein purification. Also mention the roles SDS and PEG in protein purification.(R)	2+3	CO3
5	Explain the biochemical cause behind the development of thalassemia and sickle cell anemia. (U)	3+2	CO1
	SECTION B (Attempt any Two questions)		
6.	Illustrate the technique of X-ray crystallography. Adda note on integral proteins. What is the reason behind Bohr effect? Name of metalloprotein. (R)	4+2+3+1	CO3
7.	Name two protein databases. Explain 'salting out' phenomena in detail. What is bacteriorhodopsin? Compare hemoglobin and myoglobin with respect to oxygen carrying property. (U)	2+4+2+2	CO1 CO2
8.	Illustrate the role of proline as helix breaker. What are hydropathy plots? Compare between motifs anddomainwith example. Where do you find triple helix? Explainbriefly.(U)	2+2+3+3	CO1 CO2
9	Outline theprinciplesofEdmanndegradationandsolidphase peptide synthesis. Analyse the roles of different chromatographic techniques by briefly describing their principle.(An)	2+3+3+2	CO4 CO3

BIC12004	PROTEIN LAB (PRACTICAL)	L	T	P	C
Version 1.0	Contact Hours - 45	0	0	3	2
Pre-requisites/Exposure	PLUS TWO LEVEL BIOLOGY		I	I	
Co-requisites	Amino Acid: structure and function				

Course Objectives

- 1. To provide students with hands-on training in the quantitative studies related to protein biochemistry.
- 2. Students will need to become proficient with terms, techniques, and applications.

Course Outcomes

On completion of this course, the students will be able to

- CO1. Explain the basis of spectrophotometry for the determination of proteincontent.
- CO2. Demonstrate the principles of different protein estimation techniques.
- CO3. Compare between different protein purificationtechniques.
- CO4. Illustrate modern tools like spectrophotometers, colorimeters, micropipettesetc.
- CO5. **Develop** the knowledge of different modern tools and techniques in biological samples from everydaylife.

Catalog Description

The core course "protein lab" is a practical paper which has been designed to provide the knowledge of qualitative estimation of protein molecules. It deals with all the basic theories and moderntechniquesofproteinestimation.Studentswillbeableto understandthebasicconceptsof spectrophotometers and others techniques and will practice hands-on all of them. They will also learn to compare and use these methods for practical purpose. All the lectures will be devoted on discussions of basic theories and advanced topics, focusing on practical implementation of knowledge.Classeswillbeconductedbylectureaswellaspowerpointpresentation,audiovisual virtual lab session as per requirement. The tutorials will familiarize thestudents with practical problem-solving techniquesled by the course coordinator. Students will strongly grab the basic concepts of the subject via exercise and discussions with thecoordinator.

Course Content

PROTEIN LAB

- 1. Spectrophotometry: Theory, Instrumentation and Application.[5 LectureHours]
- 2. Estimation of proteins using UV absorbance. [5 LectureHours]
- **3.** Estimation of proteins using Biuret method. **[5 LectureHours]**
- 4. Microassay of proteins using Lowry method. [5 LectureHours]
- 5. Estimation of proteins using Bradford Method. [5 LectureHours]
- 6. Isoelectric focusing of casein. [10 LectureHours]
- 7. Estimation of protein content in yeast cells.[10 LectureHours]
- 8. SDS-PAGE analysis of proteins. [10 LectureHours]

SUGGESTED READINGS

1.Lehninger: Principles of Biochemistry (2013) 6thed., Nelson, D.L. and Cox, M.M., W.H.

Freeman and Company (New York), ISBN:13: 978-1-4641-0962-1 /ISBN:10:1-4292-3414-8.

2.Physical Biochemistry (2009) 2nded., Sheehan, D., Wiley-Blackwell (West Sussex), ISBN: 9780470856024 / ISBN:9780470856031.

3. The Tools of Biochemistry (1977; Reprint 2011) Cooper, T.G., Wiley India Pvt. Ltd. (New Delhi), ISBN:978-81-265-3016-8.

Modes of Evaluation: Quiz/Assignment/ presentation/ extempore/ Written Examination Examination Scheme:

Components	Mid Term	Attendance	Class Assessment	End Term
Weightage (%)	20	10	30	40

	Mapping between COs and Pos	
	Course Outcomes (COs)	Mapped Program Outcomes
CO1	explain the basis of spectrophotometry for the determination of protein content.	PO1, PO2, PO3, PO4
CO2	demonstrate the principles of different protein estimation techniques.	PO1, PO4, PO9, PO10
CO3	compare between different protein purification techniques.	PO1, PO2, PO3, PO4
CO4	illustrate their concept on modern tools like spectrophotometers, colorimeters, micropipettesetc.	PO1, PO3, PO5, PO6, PO7
CO5	develop the knowledge of different modern tools and techniques in biological samples from everyday life.	PO1, PO4, PO5, PO7, PO8

Relationship between the Course Outcomes (COs) and Program Outcomes (POs)

		Fundamental Knowledge	Critical Thinking	Skill	Technical Knowledge	Logical Thinking	Problem Identification Ability	Analytical Knowledge	Career Goals	Team Work	Sustainable Development to Environment	Development to Society.	Development to Humanity
Course Code	Course Title	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
BIC12004	PROTEIN LAB (PRACTICAL)	3	2	3	2	2	1	2	1	1	1	-	-

1=weakly mapped

2= moderately mapped

3=strongly mapped

Model Question Paper

Name: Enrolment N	0:		ADAMAS UNIVERSITY PURSUE EXCELLENCE	
Program: B. Semester: O	Sc. Biochemistry	4 – PROTEIN		AL) 03Hrs. Marks:40
Instructions: Attempt any to (carrying 10 r	two questions from Section	on A (each carry	ving 10 marks); Sec	etion B is Compulsory
	Secti	on A (Attempta	any Two)	
1.	a) Write the princi- spectrophotometer. b) standard curve with the data and determine the protein concentration. (A	Draw a supplied ne unknown	4 6	CO1 CO2
2.	a) Explain the basic theo PAGE. (U)		4 6	CO3 CO4
	b)Determine the unknow concentration using the samples with the help of reaction. (Ap)	e supplied		
3.	a) Write the principle exchange chromatograp b) Determine the unkr concentration using the samples with the help of assay. (An)	hy.(R) nown protein he supplied	4 6	CO3 CO2
	SECTION B is compu	lsory		
4.	Viva-voce (U/An/Ap/R		10	CO1 CO2 CO3 CO4 CO5
5.	Practical copy (U/Ap/E	Ev)	10	CO1 CO2 CO3

Course Code ENG11057	Course Name English Language and Literature	L 2	Т 0	P 0	Credit 2						
Course Outcome	Course Outcome Statement										
CO1	Have a basic understanding of communication processes and to know the practical implications and its challenges at the work place.										
CO2	Understand the practical uses of English grammar and to use grammar correctly and unambiguously.										
CO3	Be acquainted with some texts of English Literature and develop their reading and comprehension skills.										
CO4		Develop the ability to identify difficult sounds, words and phrases to support listening comprehension and be familiar with the various strategies of reading and develop the ability to read texts with fluency, understanding and competence.									
CO5	Acquire fluency in speaking English in order to	o carry out ef	ffective	professi	ional communication.						
CO6	Be familiar with different formats of business of other technical writings.	communicatio	on like	reports,	letters, CVs and						

- c) Barriers and Strategies of Communication
- d) Workplace and Telephone Communication

Unit 2: Grammar and Syntax:

- a) Tense
- b) Parts of Speech
- c) Articles
- d) Prepositions
- e) Sentence-Making
- f) Voicechange
- g) Synonyms and antonyms
- h) One- WordSubstitutions

Unit 3: Literature: Reading and Textual analysis

- a) Close Reading: Short Story: "The Gift of the Magi": by O'Henry
- b) Paraphrasing: Poem: "Stopping by Woods on a Snowy Evening": RobertFrost
- c) Summary: Non-fiction: Extracts from *The Great Derangement: Climate Change and The Unthinkable* by AmitavGhosh
- d) ReadingComprehension
- e) Interpreting Graphs and Charts

Unit 4: Speaking skills

- a) Introduction
- b) InterpersonalCommunication
- c) Group Discussion
- d) Interview

Unit 5: Writing Skills

a) Composition b) Letter writing- CV and applicationletter c) ReportWriting d) Memo-Writing e) Note-making f) Business Communication

Unit 6: Listening skills

- a) ActiveListening
- b) Types of Listening
- c) ListeningExercises
- d) Reading Exercises:Comprehension

Text Book:

- 1. Kaul Asha. Effective Business Communication. PHI Learning Pvt Ltd.2014.
- 2. Wren and Martin. High School Grammar And Composition. S. Chand, 1995.
- 3. Lewis, Norman. Word Power Made Easy. Anchor:2014.
- 4. Riordan, Daniel G & Pauley Steven A. : Technical Report Writing Today. 2004.
- 5. Hamp-Lyons and Heasely, B .*Study Writing; A Course in Written English. For Academic and Professional Purposes,* Cambridge Univ. Press,2006.
- 6. Quirk R., Greenbaum S., Leech G., and Svartik, J. A Comprehensive Grammar of the English language, Longman:London,1985.
- 7. Gupta, A. English Reading Comprehension. Ramesh Publishing House, 2009.
- 8. Balasubramaniam, T. A Textbook of English Phonetics for Indian Students. Macmillan:2012.

DGS11001	Design Thinking L T L						
Version 1.0	Contact hours-30 lecture hours	2	0	0	2		
Pre-requisites/Exposure	Knowledge of analyzing society problems and productusage						
	problems and a zeal to improve the current situation, in						
	addition to knowing to using laptop/computers, internet,						
	social media interaction, file sharing and uploading, email						
	and communication etiquettes.						
Co-requisites	-						

Course Objectives

- 1. To enable students to acquire knowledge, imagination and be more assertive on opinions on problems insociety.
- 2. To enable students to learn basics of research, data collection, analysis, brainstorming **t** find solutions to issues.
- 3. To make them understand Design Thinking methodologies to problems in field of studyand other areas as well.
- 4. To help students to understand future Engineering positions with scope of understanding dynamics of working between inter departments of a typicalOEM.

Course Outcomes

On completion of this course, the students will be able to

- CO1. **Examine** design thinking concepts and principles
- CO2. Illustrate the methods, processes, and tools of design thinking
- CO3. Assess the Design Thinking approach and model to real world scenarios

CO4. **Demonstrate** the role of primary and secondary research in the discovery stage of design thinking

Catalogue Description

DesignthinkingcourseisacompletelyonlinecourseofferedtothefirstyearUGprogramsacross all streams. This course is designed to help understand the steps followed in the process of designing a solution to aproblem.

Course Content

UnitI:

4 LectureHours

WHAT IS DESIGN THINKING: Designers seek to transform problems into opportunities. Through collaboration, teamwork, and creativity, they investigate user needs and desires on the way to developing human-centered products and/or services. This approach is at the very heart of design thinking.

UnitII: 4 LectureHours

THE DESIGN THINKING MODEL: A tool that helps guide you along a design thinking path. The model does this by providing a series of activities that that will help you effectively design a product, service or solution to a user's need. The model presents the approach as a process, allowingustolookateachstep–orphase–alongthejourneytothedevelopmentofafinaldesign.

UnitIII: 4 LectureHours

PHASE 1: DISCOVER: Begin the design thinking process with the Discover phase, where you will identify the specific problem your design is intended to solve, as well as important usability aspects from those who will use your design. Discovery can be performed through a variety of different research methods which you will learn in this module.

UnitIV: 4 LectureHours

PHASE2:DEFINE:IntheDefinephase, youcometounderstandtheproblem. Weoftenreferto this as framing the problem. You can do this by using a variety of tools, including storytelling, storyboarding, customer journey maps, personas, scenarios, andmore.

UnitV:

4 LectureHours

PHASE 3: DEVELOP: Turn your attention to solving the problem. In this phase you brainstorm custom creative solutions to the problems previously identified and framed. To do this, you conceptualize in any way that helps, putting ideas on paper, on a computer, or anywherewhereby they can be considered and discussed.

UnitVI: 4 LectureHours

PHASE 4: DELIVER: This phase is all about testing and building concepts. Here you take allof the ideas that have been discussed to this point and bring them a little closer to reality by building aconcept;somethingthatmakes iteasier forausertoexperiencea design. This conceptise ferred to as aprototype.

UnitVII: 4 LectureHours PHASE 5: ITERATE: You will test the prototype of you

PHASE 5: ITERATE: You will test the prototype of your design solution, collecting and acting on feedback received. These actions may mean minor or major revisions to your design, and are repeated as often as necessary until a solution is reached. Tools such as focus groups and questionnaires are used to help you collect feedback that can help with your final design.

UnitVIII:

2 LectureHours

BEYOND DESIGN THINKING: The Design Thinking Model is a tool that helps guide you along a design thinking path. The model does this by providing a series of activities that that will help you effectively design a product, service or solution to a user's need. The model presents the approach as a process, allowing us to look at each step – or phase – along the journey to the development of a finaldesign.

Reference Books

1.Brown, Tim. "What We Can Learn from Barn Raisers." Design Thinking: Thoughts by TnBrown. Design Thinking, 16 January 2015. Web. 9 July2015.

2. Knapp, Jake. "The 8 Steps to Creating a Great Storyboard." Co.Design. Fast Company & 21 Dec. 2013. Web. 9 July2015.

3. Van der Lelie, Corrie. "The Value of Storyboards in the Product Design Process." Journal of Personal and Ubiquitous Computing 10.203 (2006): 159–162. Web. 9 July 2015.[PDF].
4. Millenson, Alisson. "Design Research 101: Prototyping Your Service with a Storyboard." Peer Insight. Peer Insight, 31 May 2013. Web. 9 July2015.

Modes of Evaluation: Quiz/Assignment/ presentation/ extempore/ Written Examination Examination Scheme:

Components	Mid Term	Attendance	Class Assessment	End Term
Weightage (%)	20	10	30	40

Relationship between the Course Outcomes (COs) and Program Outcomes (POs)

Mapping between COs and Pos								
	Course Outcomes (COs)	Mapped Program Outcomes						
CO1	examine design thinking concepts and principles	PO1, PO5, PO11						
CO2	illustrate the methods, processes, and tools of design thinking	PO1, PO2, PO7, PO11						
CO3	construct the Design Thinking approach and model to real world scenarios.	PO1, PO2, PO4, PO7						
CO4	examine the role of primary and secondary research in the discovery stage of design thinking	PO1, PO5, PO7						

		Fundamental Knowledge	Critical Thinking	Skill	Technical Knowledge	Logical Thinking Ability	Problem Identification	Analytical Knowledge	Career Goals	Team Work	Sustainable Development to Environment	Development to Society	. Development to Humanity
Course Code	Course Title	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
DGS11001	Design Thinking	3	2	-	1	2	-	3	-	-	-	2	-

1=weakly mapped 2= moderately mapped 3=strongly mapped

Model Question Paper

ADAMAS UNIVERSITY SCHOOL OF ENGINEERING AND TECHNOLOGY END-SEMESTER EXAMINATION: JULY 2020

Stream: BIOCHEMISTREY

Name of the Program: B. SC.Semester:I PAPER TITLE:DesignThinking PAPER CODE: DGS11001 MaximumMarks:40 Total No ofquestions:12

Time duration: 3hours Total No of Pages:01

Instruction for the Candidate:

- 1. At top sheet, clearly mention Name, Univ. Roll No., Enrolment No., Paper Name & Code, Date ofExam.
- 2. All parts of a Question should be answered consecutively. Each Answer should start from a freshpage.
- 3. Assumptions made if any, should be stated clearly at the beginning of youranswer.

	Section A (Answer All the Questions) $(5 \times 1 = 5)$		
1.	List the steps involved in Design Thinking.	U	CO1
2.	Enumerate the basic elements of Design Thinking.	U	CO2
3.	Define Napkin Pitch.	R	CO3
4.	What is Assumption testing?	R	CO4
5.	Give the principles of Ethnography.	U	CO2
	SECTION B (Attempt any Three Questions) (3 x 5 = 15)		
4.	Briefly explain the importance of ethnography in design thinking?	U	CO2
5.	What are the successive steps for concept development?	Ар	CO3
6.	Elucidate the different types of concept development strategies.	Ар	CO3
7.	Explainwith Example: surface keys for Assumption Testing.	Evalua te	CO4
	SECTION (Answer Any Two Questions) (2 x 10 = 20)		
8.	Explain in detail about importance of prototyping in Design Thinking.	U	CO4
9.	Write animportance of involving stakeholders in developing new concepts and Plan for conducting experiments within short time and inexpensively.	Create	CO3
10.	Distinguishbetween design thinking and visualization of a problem.	An	CO1

BOT11001	ELECTIVE BOTANY – I (Theory)	L	Т	Р	С	
Version 1.0	Contact Hours - 60	3	1	0	4	
Pre-requisites/Exposure	Pre-requisites/Exposure 12 th with Biology as one subject					
Co-requisites	-					

Course Objectives:

- 1. Students will be able to develop basic knowledgein plant science and also be able texplain various aspects of plant growth and development of lower group ofplants;
- 2. Students will be able to understand intrinsic mechanismof plant growth and developments and their corelation with surrounding ecosphere as wellbiosphere;
- 3. Students will be able to develop fundamental knowledge and can be implemented techniques practices of economic important plant.

Course Outcomes

On completion of this course, the students will be able to

CO1. Illustrate in detail phycology in various aspects and also implementation of algal biotechnology for commercial purposes.

CO2. Explain and Categorize in detail various divisions of Fungi and their commercial

importance as well harmful effects.

CO3. Demonstrate basic knowledge and economic importance of Lichen. **CO4. Summarize** the basic concept of plant pathology and also can be able implement this knowledge in applied fields.

CO5. Develop fundamental knowledge and can be implemented this skill for cultivation

practices and commercial uses of economic important plant.

Catalogue Description

Elective Botany I lecture course covers a vast range of basic plant science including various branches of Botanical subjects. The course takes a broader approach and covers many aspects of lower group of plants as well physiological phenomena of all the plants community. Moreover, this curriculum covers cultivation practices of economic importance plants. Classroom activities will be designed to encourage students to play an active role in the construction of their own knowledge and in the design of their own learning strategies. We will combine traditional lectures withother

active teaching methodologies using digital platforms, such as analysis of video scenes and debates.Studentswillbeencouragedtoactivelytakepart inallgroupactivitiesandto giveanoral group

presentation. Students will be expected to interact with media resources, such as, web sites, videos, DVDs, and newspapersetc.

CourseContent:

UNITI

Algae: Introduction; habitat and range of thallus structure in algae; Principles of classification and outline classification of Lee (2009) up to divisions, Diagnostic characters of important algal family's examples, Algal genetics, Economic importance of algae, Bioreactor. cultivation of algae and its prospects.

UNITII

Fungi: Introduction; habitat, Basic classifications, Diagnostic characters of important families with examples, Fungal genetics, Economic importance of fungi, Pathogenic and poisonous fungi.

UNITIII

Lichen: Habitat and thallus structures; economic importance.

(14hours)

(5hours)

(60hours)

(12hours)

(10hours)

Plant Pathology: Plant Diseases: Introduction and Definition; concepts of parasitism and saprophytism,Koch's postulates, Classification of plant diseases based on symptoms; Factors influencing infection, colonization and development of symptoms, Genetic basis of disease resistance and pathogenicity: gene for gene hypothesis; breeding for disease resistance, Brief ideaaboutsymptoms; disease cycles and control measures of: Loose smut of wheat, Citrus canker, Late blight of potato, Rust of wheat, Brown spot of Rice&Alternaria blight of Brassica.

UNITV

UNITIV

Plant physiology: Transport in plants water and mineral uptake, Transpiration- Mechanism of stomatalmovement, significance; Photosynthesis-typesofphotosystem, significance, cycles; Plant Growthregulators.

UNITVI

Economic Botany: Introduction, Method of cultivation, processing and utilities of the products of the following: Rice, Tea, Jute and Brassica.

Text Books

- 1. Phycology by Robert EdwardLee
- 2. Introduction to Fungi by John Webster
- 3. Plant Pathology by G.N.Agrios
- 4. Plant Physiology by Lincoln Taiz, Eduardo Zeiger

Reference Books

1. College Botany Vol. II ByGangulee andKar

2. Studies in Botany Vol I & II by J.N. Mitra, D. Mitra, S.K. Chaudhuri

Modes of Evaluation: Quiz/Assignment/ presentation/ extempore/ Written Examination **Examination Scheme:**

Components	Mid Term Attendance		Class Assessment	End Term		
Weightage (%)	20	10	30	40		

(15hours)

(4hours)

		I		Μ	lappin	g betw	een C	Os and	POs		I	3.5]	
					Cour	se Out	comes	(COs)				Map Progr Outco	am		
		CO1	develop to	explai	n vario	dge in us aspe nt of lo	ects of	plant g	rowth			PO1, PC	94, PO8		
		CO2	explain and their	the cate	egories	in deta	ail vari	ous div	visions			PO1, PO2, PO4			
		CO3	demonst of Licher	nstrate basic knowledge and economic importance then rate basic knowledge in plant pathology and also be						e	PO1, PO2, PO3, PO7				
		CO4	explai	in vario	ous gen	abl abletic as	le to pect of	plant o	lisease	as wel	1	PO1, 1 PO5,	,		
		CO5	sum ex	eir impact plant diseases and their controlling measures. summarize in plant physiology and also be able to explain various physiological reactions as well eir impact on plant growth and development							PO1, PO4,				
		CO6	develop this skill	develop fundamental knowledge and can be implemented this skill for cultivation practices and commercial uses of economic important plant						PO1, 1 PO6,					
Course		Course	Fundamental Knowledge	Critical Thinking	Skill	Technical Knowledge	Logical Thinking	Problem Identification Ability	Analytical Knowledge	Career Goals	Team Work	Sustainable Development to Environment	Development to Society.	Development to Humanity	
Cours Code	e	Course Title	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
BOT	11001	ELECTIV BOTANY		3	1	2	2	1	1	_	1	_	_	_	

Relationship between the Course Outcomes (COs) and Program Outcomes (POs)

1=weakly mapped

(THEORY)

Ι

BOT11001

2= moderately mapped

3

3

2

1

2

1

1

1

3=strongly mapped

	Model Question Paper		
Nar	ne:		
Enr	olment No:	ADAMAS UNIVERSITY PURBLE EXCELLENCE	
Cou	Irse: BOT11001-ELECTIVE BOTANY - I(THEORY)		
Pro	gram:B.Sc.Biochemistry	Time: 03Hr Max. Marks	
Atte Sect	tructions: Empt any four questions from Section A (each carrying 5 marks) tion B (each carrying 10 marks). CTION A (Attempt any Four questions)); any two qu	uestions from
1.	Member of Cyanophyceaean algae shows much resemblances with photosynthesizing bacteria (cyanobacteria)- justify under the light of evolution. (U)	5	CO4
2.	Differentiate Heterothallism and Homothallism in Fungi. (U)	5	CO2
3.	Write a short note on economic importance of Lichen. (R)	5	CO3
4.	State the most important reactor use for commercial algal production. (R)	5	CO1
5	Mention the key differences between Transpiration and Evaporation. (R)	5	CO5
	SECTION B (Attempt any Two questions)		
6.	Differentiate plant and animal growth regulators. Mentionthe role of Ethylene on fruit ripening. Why ABA called as stress hormone? (U)	3+5+2	CO5
7.	Explain in brief oil extraction process from Brassica. Mention the cultivation practices of summer rice in India.(R)	4+6	CO6
8.	Elaborately discuss the prospect of using algae in nutraceutical industry.(Ap)	10	CO1
9	(a) Define Koch's postulates.(b) Briefly explain the disease cycles and controlmeasures of Loose smut of wheat. (An)	3+4+3	CO4

BOT12002	Lab-Elective Botany I (Practical)	L	T	P	C
Version 1.0	Contact Hours - 45	0	0	3	2
Pre-requisites/Exposure	PLUS TWO LEVEL BIOLOGY		I		
Co-requisites	Theory of Elective Botany I				

Course Objectives:

Upon completion of this course, students should be able to:

- 1.Demonstrate a basic understanding of developmental terms and mechanisms of different plants.
- 2. Utilize laboratory techniques to design and carry-out experimental studies related **b**otany.
- 3. Convey and discuss experimental results via writtenassignments.

Course Outcome

CO1: **Develop** the skill of handling of laboratory instruments –Microscope, Autoclave, Incubator, centrifuge, Analytical balance, pH Meter, Colorimeter, Water bath, Distillation plant,

Laminar Air Flow operation etc.

- CO2: compare between monocot and dicot plants.
- CO3: Illustrate plant pigments.
- CO4: Demostrateamount of water absorption, retention and transpiration.
- CO5: Explain percent, normal, molal and molar solutions of any compound.

Catalogue Description:

Botany is a rapidly expanding field of biology integrating concepts from plant science, genetics, molecular biology, cell biology, physiology, ecology and evolution. This course investigates the cellular and molecular processes involved in regulating plant development. Topics to becovered include experimental approaches to understand the principle of laboratory instruments involved in botanical studies with their mechanism, study the anatomy and developmental stages of different plants with a comparative understanding. Laboratory work will include a demonstration based learning of plant water relationship and phenomenon like guttation and alsothe separation of photosynthetic pigments by paperchromatography.

Course Content:

Paper name: Lab-Elective Botany I

Paper code: BOT12002

1.	Acquaintance with laboratory instruments –Microscope, Autoclave,	8 hours
	Incubator, centrifuge, Analytical balance, pH Meter, Colorimeter,	
	Water bath, Distillation plant, Laminar Air Flow operation etc.	
2.	Study of the following genera and their identification: Oscillatoria,	8 hours
	Scytonema, Oedogonium, Chara, Ectocarpus, Polysiphonia.	
	(vegetative and reproductive structures).	
3.	Study of the following genera and their identification: Rhizopus,	8 hours
	Penicillium, Ascobolus, Agaricus, Polyporus.	
4.	Identification of specimens with diseases prescribed in the theoretical	7 hours
	syllabus: Loose smut of wheat, Citrus canker, Late blight of potato,	
	Rust of wheat & Brown spot of Rice.	
5.	Chemical separation of photosynthetic pigments by paper	4 hours
	chromatography.	
6.	Preparation of percent, normal, molal and molar solutions of any	4 hours
	compound.	
7.	Comparison of imbibitions of starchy, proteinaceous and fatty seeds.	4 hours
8.	Determination of amount of water absorption, retention and	4 hours
	transpiration.	
9.	Demonstration of Guttation.	2 hours
10.	Study of Monocot root.	4 hours
11.	Study of Dicot root.	4 hours
12.	Study of leaves anatomy of different plants.	3 hours

Modes of Evaluation: Quiz/Assignment/ presentation/ extempore/ Written Examination Examination Scheme:

Components	Components Mid Term		Class Assessment	End Term		
Weightage (%)	20	10	30	40		

Relationship between the Course Outcomes (COs) and Program Outcomes (POs)

	Mapping between COs and Pos							
	Course Outcomes (COs)	Mapped Program Outcomes						
C01	explainthehandlingoflaboratoryinstrumentsMicroscope, Autoclave, Incubator, centrifuge, Analyticalbalance, pH Meter, Colorimeter, Water bath, Distillationplant, Laminar Air Flow operation etc.	PO1, PO2, PO3						
CO2	compare between monocot and dicot plants.	PO1, PO2, PO4						
CO3	Illustrate plant pigments.	PO1, PO2, PO3, PO4						
CO4	Demostrate amount of water absorption, retention and transpiration	PO1, PO3. PO6, PO9						
C05	explain percent, normal, molal and molar solutions of any compound.	PO1, PO3, PO4, PO8,						

BOT12002	Course Code	
Lab- Elective Botany I	Course Title	
ω	PO1	Fundamental Knowledge
0	PO2	Critical Thinking
ω	PO3	Skill
ю	PO4	Technical Knowledge
	PO5	Logical Thinking
-	PO6	Problem Identification Ability
1	PO7	Analytical Knowledge
-	PO8	Career Goals
-	PO9	Team Work
,	PO10	Sustainable Development to Environment
	PO11	Development to Society.
,	PO12	Development to Humanity

1=weakly mapped

2= moderately mapped

3=strongly mapped

Model Question Paper

Name: Enrolment	t No:	ADAMAS UNIVERSITY PURSUE EXCELLENCE						
Course: BOT12002 I LAB Elective Botany I (PRACTICAL)Program:B.Sc.BiochemistryTime: 03Hrs.Semester:Even 2020-21Max. Marks:40								
Instruction	18:							
Attempt an (carrying 10	y two questions from Section A (each ca) marks).	arrying 10 marks); Se	ction B is Compulsory					
	Section A (Attem	pt any Two)						
1.	a) Identify specimen A under microscope and write your conclusion. (Ap)	6	CO2					
	b) Classify simple tissue in plants. (An)	4						
2.	a) Identify specimen B under microscope and write your conclusion.(Ap)	6	CO1					
	b) Classify different type of plants. (An)	4						
3.	a) Identify specimen C. (Ap)	5	CO4					
	b) Write about the guttation. (U)	5						
4.	a) Identify the model of dissection of cockroach D. (Ap)	6	CO3					
	b) Draw the monocote root. (Ap)	4	CO5					
	SECTION B is compulsory							
5.	Viva-voce (U/An/Ap/R/Ev)	10	CO1, CO2, CO3, CO4, CO5					
6.	Practical copy (U/Ap/Ev)	10	CO1, CO2, CO3					

ZOL11001	ELECTIVE ZOOLOGY I (THEORY)	L	Т	Р	С
Version 1.0	Contact Hours - 60	3	1	0	4
Pre-requisites/Exposure	PLUS TWO LEVEL BIOLOGY				
Co-requisites					

Course Objectives

- 1. To provide those students with some biology background with an introduction to zoology and the study of animals. This course is designed for students of any major, but will especially benefit biology majors, as well as secondary science education majors.
- 2. It will also provide an informative elective for 5-8 math/science educationmajors.
- 3.Gathering information about other organisms' structure and function, and how **t**xt compares to human beings, enables us to live a more knowledgeable, involved, and environmentally aware life in a science-consciousage.

Course Outcomes

On completion of this course, the students will be able to

CO1. **Comprehend** the fundamentals of animal sciences, which helps them to understand the complex relations among various living organisms.

CO2. **Illusrate**and analyze the course of evolution: i.e. how complex multicellular organisms develop from unicellular cells and correlate with other fields of biology.

CO3. **Demonstrate** and compare the basis of life processes in the non-chordates and chordates which helps them to identify the economically important organisms.

CO4. Compare between acoelomate, pseudo-coelomate and coelomate.

CO5. **Develop** as lifelong learner about vertebrate and invertebrate organisms which contribute in greater benefit of humanity.

Catalogue Description

Elective zoology I course will help to understand the behavior structure and evolution of animals. This course includes diverse approaches by studying animals and develop a better understanding of howwe, ourselves, function and interact with the world around us.All the lectures will be devoted on discussions of basic theories and advanced topics, focusing on practical implementation of knowledge. Classes will be conducted by lecture as well as power

pointpresentation, audiovisual virtual labsession as per requirement. The tutorial swill familiarize the students with practical problem-solving techniques led by the course coordinator. Students will strongly grab the basic concepts of the subject via exercise and discussions with the coordinator.

CourseContentELECTIVE ZOOLOGYI

GE1: DIVERSITY OF LIFE FORMS (THEORY)(SEMESTER I)

Unit1: Protista3 LectureHoursGeneral characters of Protozoa; Life cycle of Plasmodium; Conjugation in Paramoecium.

Unit2: Porifera 3 LectureHours

General characters and canal system in Porifera.

Unit3:Radiata 3LectureHours

General characters of Cnidarians and polymorphism.

Unit4: Acoelomates3 LectureHoursGeneral characters of Helminthes; Life cycle of Taeniasolium.

Unit 5:Pseudocoelomates3 LectureHoursGeneral characters of Nemathehelminthes; Parasitic adaptations.

Unit 6:CoelomateProtostomes 4 LectureHours

General characters of Annelida; Metamerism.

Unit7:Arthopoda 4 LectureHours

General characters; Social life in insects; Communication in Honey Bees.

Unit8: Mollusca 4 Lecture Hours

General characters of mollusca; Torsion in gastropoda.

Unit 9: Coelomate Deuterostome 4 LectureHours

General characters of Echinodermata; Water Vascular system in Starfish.

Unit10.Protochordata 4 LectureHours

Salient features

Unit11.Pisces 5 LectureHours

Outline of classification; Parental care in Fish.

Unit12.Amphibia 5 Lecture Hours

General characters; Outline of classification; Paedogenesis.

Unit13.Reptilia 5 Lecture Hours

Amniotes; Origin of reptiles; Outline of classificationin reptiles.

Unit14.Aves 5 LectureHours

General characters; Flight adaptations

Unit15.Mammalia 5 LectureHours

Outline of classification; Dentition in mammals.

Reference Books

- 1. Barnes, R.D. (1992). Invertebrate Zoology. Saunders College Pub.USA.
- 2. Campbell & Reece (2005). Biology, Pearson Education, (Singapore) Pvt.Ltd.
- 3.Kardong, K. V. (2002). Vertebrates Comparative Anatomy. Function and Evolution. Taa McGraw Hill Publishing Company. NewDelhi.
- 4. Ruppert, Fox and Barnes (2006) Invertebrate Zoology. A functional Evolutionary Approach 7th Edition, ThomsonBooks/Cole
- 5. Raven, P. H. and Johnson, G. B. (2004). Biology, 6th edition, Tata McGraw H Publications. NewDelhi

Modes of Evaluation: Quiz/Assignment/ presentation/ extempore/ Written Examination Examination Scheme:

Components	Mid Term	Attendance	Class Assessment	End Term
Weightage (%)	20	10	30	40

Mapping	between COs and POs	
	Course Outcomes (COs)	Mapped Program Outcomes
CO1	comprehend the fundamentals of animal sciences, which helps them to understand the complex relations among various living organisms.	PO1, PO2, PO6
CO2	illustrate the course of evolution: i.e. how complex multicellular organisms develop from unicellular cells and correlate with other fields of biology.	PO1, PO2, PO6,PO9
CO3	demonstrate the basis of life processes in the non- chordates and chordates which helps them to identify the economically important organisms.	PO1, PO2, PO5,PO8
CO4	compare between acoelomate, psuedocoelomate and coemate.	PO1, PO2, PO3
CO5	develop as life-long learner about vertebrate and invertebrate organisms which contribute in greater benefit of humanity.	PO1, PO11, PO12

Relationship between the Course Outcomes	s (COs) and Program Outcomes (POs)
---	------------------------------------

		Fundamental Knowledge	Critical Thinking	Skill	Technical Knowledge	Logical Thinking	Problem Identification Ability	Analytical Knowledge	Career Goals	Team Work	Sustainable Development to Environment	Development to Society.	Development to Humanity
Course Code	Course Title	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
ZOL11001	ELECTIVE ZOOLOGY I (THEORY)	3	3	1	-	1	2	-	1	1	-	1	1

1=weakly mapped

2= moderately mapped

3=strongly mapped

Model Question Paper

Nar	ne:		
Enr	olment No:	ADAMAS UNIVERSITY PURSUE EXCELLENCE	
Pro Sem Inst Atte	arse: ZOL11001 - ELECTIVE ZOOLOGY I (THEORY) gram: B.Sc.Biochemistry nester:Odd2020-21 cructions: empt any three questions from Section A (each carrying 4 mar a Section B (each carrying 7 marks).	Time: 03Hı Max. Marl ks); any four	(s:40
SEC	CTION A (Attempt any Three questions)		
1.	Describe the social structure of a termite colony.	4	CO5
2.	What are the adaptations acquired by the round worms to maintain their parasitic nature in their habitat inside human host? (R)	4	CO2
3.	Maternal care is more often provided in mammals' – Why? (An)	4	CO4
4.	 Will it be possible to propose that annelids evolve from <i>platyhelminthes</i>according to corn or fission theory? Give justification against your answer. (An) SECTION B (Attempt any Four questions) 	1 3	CO3
5.	 a) How do Gastropods losstheirsymmetry? Explain the process with diagram. (Ap) b) What do understand by chiastoneury?(U) 	2 3 2	CO2
6.	 a) What is the difference between monogenetic and digenetic life cycle?(U) b) Discuss the process of sexual reproduction of malarial parasite.(U) 	3 4	CO1 CO2 CO4
7.	 a) Discussthe process of sexual reproduction in Paramecium with proper diagram.(Cr) b) Whypinacocyte and choanocyte cells are there in the canal system of <i>Scypha</i>?(An) 	5 2	CO1 CO2
8.	 a) 'Parental care is defined as "any form of parental behavior that appears likely to increase the fitness of the parent's offspring"'-Explain this phrase in your own words. (Ev) b) What do you mean by parental care? Give example. (U) 	4 2 1	CO5 CO2
9.	 a) List anatomical modification in bird's that enhances flight.(R) b) Write down two characteristic features of order chelonia. What is notochord? Name one agnathanchordate. (U) 	3 2 1 1	CO4

ZOL12002	ELECTIVE ZOOLOGY I LAB (PRACTICAL)	L	T	Р	С
Version 1.0	Contact Hours - 45	0	0	3	2
Pre-requisites/Exposure	PLUS TWO LEVEL BIOLOGY	1			
Co-requisites	Elective Zoology I				

Course Objectives

- 1. To provide students with hands-on activities designed to encourage interest in the field **d**eology, as well as promote greater understanding of the concepts presented inlecture.
- 2. Students will need to become proficient with terms, techniques, and applications.

Course Outcomes

On completion of this course, the students will be able to

- CO1. Identify, classify and compare between non chordate and chordate specimens.
- CO2. Explain the ecological importance of these both chordate and non chordatespecimens.
- CO3. Compare between the digestive, reproductive and nervous system of cockroach.
- CO4. **Demostrate**the course of evolution: i.e.how complex multicellular organisms develop from unicellular cells and correlate with other fields ofbiology.
- CO5. **Illustrate** the knowledge of using different modern tools and techniques in the field of biology which will help in their furtheracademics.

Catalogue Description

Elective zoology I Practical (LAB) is the overall about diversity of life forms which include identification, classification and ecological importance of unicellular organisms to multicellular organisms, non chordate to chordate, in the course of evolution. This course covers laboratory techniques and study of animal phyla. The very nature of zoology lab requires students to view animals in different settings and to identify and describe many of the animal phyla. All the lectures will be devoted on discussions of basic theories and advanced topics, focusing on practical implementation of knowledge. Classes will be conducted by lecture as well as power point presentation, audio visual virtual lab session as per requirement. The tutorials will familiarize the students with practical problem-solving techniquesled by the course coordinator. Students will strongly grab the basic concepts of the subject via exercise and discussions with the coordinator.

Course Content

ELECTIVE ZOOLOGY LAB I

DIVERSITY OF LIFE FORMS (PRACTICAL)

1. Identification and Classification of Any these of the following:

15 Lecture Hours

a. **Non-chordate specimens**: Scypha, *Obelia*, Sea-anaemone, *Ascaris*, *Hirudinaria*, Scorpion, *Bombyxmori*, *Achatina*, *Loligo*, Starfish, *Balanoglossus*.

15 Lecture Hours

Chordate specimens: Branchiostoma, Petromyzon, Scolidon, Lates, Axolotllarva, Tylototriton, Gekko; Hemidactylus, Turtle, Naja, Chiroptera.

15 Lecture Hours

2. Ecological Note – On any of the specimens in Exercise No1.

15 Lecture Hours

3. Models of dissection of Cockroach - Cockroach: Digestive, Reproductive, Nervous System.

Reference Books

- 1.Kardong, K. V. (2002). Vertebrates Comparative Anatomy. Function and Evolution. Taa McGraw Hill Publishing Company. NewDelhi.
- 2. Ruppert, Fox and Barnes (2006) Invertebrate Zoology. A functional Evolutionary Approach 7th Edition, ThomsonBooks/Cole
- 3. Raven, P. H. and Johnson, G. B. (2004). Biology, 6th edition, Tata McGraw H Publications. NewDelhi

Modes of Evaluation: Quiz/Assignment/ presentation/ extempore/ Written Examination Examination Scheme:

Components	Mid Term	Attendance	Class Assessment	End Term
Weightage (%)	20	10	30	40

b.

	Mapping between COs and Pos						
	Course Outcomes (COs)	Mapped Program Outcomes					
CO1	Identify , classify and compare between non chordate and chordate specimens.	PO1, PO2, PO3					
CO2	explain the ecological importance of these both chordate and non chordate specimens.	PO1, PO3					
CO3	compare between the digestive, reproductive and nervous system of cockroach.	PO1, PO2, PO3, PO4, PO8					
CO4	demonstrate the course of evolution: i.e. how complex multicellular organisms develop from unicellular cells and correlate with other fields of biology.	PO1, PO3. PO6, PO9					
CO5	develop the knowledge of using different modern tools and techniques in the field of biology which will help in their further academics.	PO1, PO4, PO8					

Relationship between the Course Outcomes (COs) and Program Outcomes (POs)

		Fundamental Knowledge	Critical Thinking	Skill	Technical Knowledge	Logical Thinking	Problem Identification Ability	Analytical Knowledge	Career Goals	Team Work	Sustainable Development to Environment	Development to Society.	Development to Humanity
Course Code	Course Title	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
ZOL12002	ELECTIVE ZOOLOGY LAB I (PRACTICAL)	3	2	3	2	-	1	-	1	2	-	-	-

1=weakly mapped

2= moderately mapped

3=strongly mapped

Model Question Paper

Name: Enrolment N	lo:		ADAMAS UNIVERSITY PUREOE EXCELLENCE	
	L12002 – ELECTIVE ZO Sc.Biochemistry en 2020-21	OLOGY I LA	Time	.) : 03Hrs. Marks:40
Instructions: Attempt any (carrying 10 r	two questions from Section	n A (each carry	ving 10 marks); Se	ction B is Compulsory
	Sectio	n A (Attempta	any Two)	
1.	a) Identify specimen A.(A b) Classify its taxonomica and write about its identic characters. (An)	alposition	2 4 4	CO1 CO4
2.	a) Identify specimen B.(A b) Classify its taxonomica and write about its identic characters. (An)	alposition	2 4 4	CO1 CO4
3.	a) Identify specimen C.(A b) Write about its importance.(U)		5 5	CO2
4.	 a) Identify the model of dissection cockroach D. b) Draw the model and w the functions of the endor in this model. (Ap) 	riteabout	2 4 4	CO3 CO5
	SECTION B is compuls	sory		
5. Viva-voce (U/An/Ap/R/Ev)			10	CO1 CO2 CO3 CO4 CO5
6.	Practical copy (U/Ap/Ev	v)	10	CO1 CO2 CO3

BIC11005	Enzymes(Theory)		Т	Р	C
Version 1.0	Contact Hours: 60	3	1	0	4
Pre-requisites/Exposure	Class 12 level Biology knowledge				
Co-requisites	Amino acid: Structure & Function				

Course Objectives

- 1. Tounderstandtheenzymesaccordingtothebasisoftheir catalyzed reactions.
- 2. To gain knowledge about the kinetic behaviour of enzymes.
- 3. To generate the concept and determine about different patterns of inhibitions of enzyme activity.
- 4. To understand the concept about the structures of active site of the enzymes and their mechanism of actions and their clinicalapplication.
- 5. To acquire the idea about regulation of enzymeactivity.

Course Outcomes

On completion of this course, the students will be able to

CO1: classify the enzymes according to the basis of their catalysed reactions.

CO2: evaluate the kinetic behaviour of enzymes.

CO3: develop the concept and determine about different patterns of inhibitions of enzyme activity.

CO4: **illustrate** the concept about the structures of active site of the enzymes and their mechanism of actions and their clinical application.

CO5: **develop** the idea about regulation of enzyme activity.

Catalogue Description

Nomenclature and classification of enzymes Holoenzyme, apoenzyme, cofactors, coenzyme, prosthetic groups ,metallo enzymes, monomeric and oligomeric enzymes Activation energy and transitionstatetheory,enzymeactivity,specificactivity,commonfeaturesofactivesites,enzyme specificity: types and theories Factors affecting enzyme activity, E, S, temp and pH Enzyme substrate complex: Concept of E-S complex, binding sites, active site, specificity, kinetics of enzyme activity Michaelis- Menten equation and its derivation Different plots for the determination of KM and Vmax and their physiological significance Two substrate reactions (random, ordered and ping pong mechanisms), enzyme inhibition, types of inhibition, determination of Ki, suicideinhibiton.

Course Content

Unit I Introduction to enzymes and Features of enzyme catalysis [10 lecture hours]

Nature of enzymes - protein and non-protein (ribozyme).Cofactor and prosthetic group, apoenzyme,holoenzyme.IUBMBclassificationofenzymes.]Factorsaffectingtherateofchemical reactions, collision theory, activation energy and transition state theory, catalysis,reaction rates and thermodynamics of reaction. Catalytic power and specificity of enzymes (concept of active site), Fischer's lock and key hypothesis, Koshland's induced fithypothesis.

Unit II Enzyme kinetics [10 lecture hours]

Relationshipbetweeninitialvelocityandsubstrateconcentration,steadystatekinetics,equilibrium constant - monosubstratereactions.Michaelis-Menten equation, LineweaverBurk plot, Eadie-Hofstee and Hanes plot. Km and Vmax, Kcat and turnover number.Effect of pH, temperature and metal ions on the activity ofenzyme.

Unit III Bisubstrate reactions [10 lecture hours]

Typesofbibireactions(sequential-orderedandrandom,pingpongreactions).Differentiatingbi substrate mechanisms (diagnostic plots, isotopeexchange).

Unit iVEnzymeinhibition [10 lecturehours]

Reversible inhibition (competitive, uncompetitive, non-competitive, mixed and substrate). Mechanism based inhibitors - antibiotics as inhibitors.

Unit IV Mechanism of actionofenzymes [10 lecturehours]

Generalfeatures-proximityandorientation,strainanddistortion,acidbaseandcovalentcatalysis (chymotrypsin, lysozyme). Metal activated enzymes and metalloenzymes, transition state analogues.

Unit V Regulation of enzyme activity [10 lecture hours]

Controlofactivitiesofsingleenzymes(endproductinhibition)andmetabolicpathways, feedback inhibition (aspartate transcarbomoylase), reversible covalent modification phosphorylation (glycogen phosphorylase).Proteolytic cleavage- zymogen.Multienzyme complex as regulatory enzymes. Occurrence and isolation, phylogenetic distribution and properties (pyruvate dehydrogenase, fatty acyl synthase) Isoenzymes - properties and physiological significance (lactatedehydrogenase).

Unit VI Involvement of coenzymes in enzyme catalysed reactions and Applications of enzymes. [10 lecture hours]

TPP, FAD, NAD, pyridoxal phosphate, biotin, coenzyme A, tetrahydrofolate, lipoic acid.

Application of enzymes in diagnostics (SGPT, SGOT, creatine kinase, alkaline and acid phosphatases), enzyme immunoassay (HRPO), enzyme therapy (Streptokinase).Immobilized enzymes.

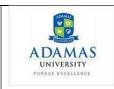
Reference Books

- 1.Lehninger: Principles of Biochemistry (2013) 6th ed., Nelson, D.L. and Cox, M.M., W.H.Freeman and Company (New York), ISBN:13: 978-1-4641-0962-1 / ISBN:10:1-42923414-8.
- 2. Textbook of Biochemistry with Clinical Correlations (2011) 7th ed., Devlin, T.M., Jun Wiley & amp; Sons, Inc. (New York), ISBN:978-0-470-28173-4.

Modes of Evaluation: Quiz/Assignment/ presentation/ extempore/ Written Examination Examination Scheme:

Components	Mid Term	Attendance	Class Assessment	End Term
Weightage (%)	20	10	30	40

Relationship between the Course Outcomes (COs) and Program Outcomes (POs)


	Mapping between COs and Pos									
	Course Outcomes (COs)	Mapped Program Outcomes								
CO1	Classify the enzymes according to the basis of their catalysed reactions.	PO1, PO2, PO6								
CO2	evaluate the kinetic behaviour of enzymes	PO1,PO2, PO3,PO6								
CO3	Develop the concept and determine about different patterns of inhibitions of enzyme activity.	PO3, PO5, PO7, PO8								
CO4	illustarte the concept about the structures of active site of the enzymes and their mechanism of actions and their clinical application	PO1, PO3, PO5, PO9								
CO5	Develop the idea about regulation of enzyme activity	PO1, PO7, PO8, PO10								

BIC110 05	Course Code	
Enzym es	Course Title	
3	- B Fundamental Knowledge	
1	\sim $\stackrel{\sim}{O}$ Critical Thinking	
3	° P Skill	
I	¹ ⁷ Technical Knowledge	
2	い B Logical Thinking Ability	
2	• Problem Identification	
2	→ ♂ AnalyticalKnowledge	
1	\sim $\stackrel{\sim}{O}$ Career Goals	
I	° 7 Team Work	
I	• Sustainable Development to Environment	
1	⁻ <u>P</u> Development to Society	
I	$\stackrel{\sim}{{0}}$ Development to Humanity	

1=weakly mapped 2= moderately mapped 3=strongly mapped

Model Question Paper

Name: Enrolment No:

Course: BIC11005 Enzymes Program: B.Sc. Biochemistry Semester:Even 2019-20

Time: 03Hrs. Max. Marks:40

Instructions:

Attempt any three questions from Section A (each carrying 4 marks); any four Questions from Section B (each carrying 7 marks). Section A (Attempt any Three)

1	What is active site of enzyme? Give its function. (R)	4	CO2
2	What is allosteric regulation? (U)	4	CO3
3	What are the difference between sequential and symmetry model of allosteric regulation. (R)	4	CO1
4	What are the advantages of allosteric regulation? (An)	4	CO3
5	Why an enzyme having an allosteric regulation show a sigmoid curve instead of a regular hyperbolic curve? (Ap)	7	CO4
6	Which of these two cases is allosteric regulation? (An) i. 'Phosphorylation of an amino acid somewhere other than the active site'ii. 'The non-covalent binding of cAMP somewhere other than the activesite'	7	CO3
7	Differentiate betweenapoenzyme and holoenzyme. What isinduced fit Model? Give itssignificance. (U)	4+3	CO5
8	Prove Km=(S)at ½ Vmax. (An)	7	CO3
9	What is activation energy? How is it lowered? Explain the limitation of key and lock model. (R)	3+4	CO2

BIC12006	Enzymes Lab (Practical)	L	Т	Р	С
Version 1.0	Contact Hours: 45	0	0	3	2
Pre-requisites/Exposure	Class 12 level Biology knowledge				
Co-requisites	Enzyme				

Course Objectives

- 1. Conceptualizing the activity and specific activity of an enzyme.
- 2. Evaluation of the Vmax and Km value of anenzyme.
- 3. Determination the pH optima and temperature optima of an enzyme.
- 4. Analysis of the Ki value of an inhibitor of enzyme.
- 5. Determination of the activity of an enzyme through coupled assay.

Course Outcomes

On completion of this course, the students will be able to

- CO1: **Determine** the activity and specific activity of an enzyme.
- CO2: Assess the Vmax and Km value of an enzyme.
- CO3: Evaluate the pH optima and temperature optima of an enzyme.
- CO4: **Determine** the Ki value of an inhibitor of enzyme.
- CO5: **Illustrate** the activity of an enzyme through coupled assay.

Catalogue Description

Toprovide the students with detailed knowledge in enzyme activity and kinetics, their mechanism of action and regulation and about the way of enzyme application and exploitation. The course include deepening knowledge in the areas of purification and isolation of enzymes, classification of enzymes and cofactors, kinetics and regulation of enzymes and their applications in industry, therapeutics and diagnosis.

Course Content

- 1. Determination of Enzyme activity of ALP. [8 lecture hours]
- 2. Determination of Enzyme activity of ALP at various Temperatures. [8 lecturehours]
- 3. Determination of Enzyme activity of ALP at various pH. [8 lecturehours]
- 4. Determination of Enzyme activity of ALP in animal sample lab 1.[10 lecture hours]
- 5. Determination of Enzyme activity of ALP at animal sample lab 2. [10 lecture hours]
- 6. Assay of Salivary Amylase at different pH and temperature. [6 lecturehours]
- 7. Assay of Plant Amylase. [10 lecture hours]

Reference Books

- Lehninger: Principles of Biochemistry (2013) 6th ed., Nelson, D.L. and Cox, M.M., W.H.Freeman and Company (New York), ISBN:13: 978-1-4641-0962-1 / ISBN:10:1-42923414-8.
- 2. Textbook of Biochemistry with Clinical Correlations (2011) 7th ed., Devlin, T.M., Jun Wiley & amp; Sons, Inc. (New York), ISBN:978-0-470-28173-4.

Modes of Evaluation: Quiz/Assignment/ presentation/ extempore/ Written Examination Examination Scheme:

Components	Mid Term	Attendance	Class Assessment	End Term
Weightage (%)	20	10	30	40

Relationship between the Course Outcomes (COs) and Program Outcomes (POs)

	Mapping between COs and Pos							
	Course Outcomes (COs)	Mapped Program Outcomes						
C01	Discuss the Elements, Tools & Methods of Construction Management	PO1, PO2, PO9						
CO2	Illustrate the Fundamentals of Network Analysis to Schedule a Project	PO1, PO3, PO4, PO7						
CO3	Demonstrate Schedule for Time and Cost of a Construction Project	PO4, PO5, PO6, PO7						
CO4	Explain the Type and Capacity of Construction Equipment Required for the Project Site	PO5, PO7, PO8, PO9						
CO5	Illustrate Organizational Structure and Safety Procedures to the Project Site	PO1, PO3, PO4, PO7, PO9						

		Fundamental Knowledge	Critical Thinking	Skill	Technical Knowledge	Logical Thinking Ability	Problem Identification	AnalyticalKnowledge	Career Goals	Team Work	Sustainable Development to Environment	Development to Society	. Development to Humanity
Course Code	Course Title	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
BIC12006	Enzymes Lab	3	1	3	3	2	1	3	1	3	-	-	-

1=weakly mapped

2= moderately mapped

3=strongly mapped

Model Question Paper

Name:

Enrolment No:

Course: BIC12006Enzymes Lab

Program: B.SCBiochemistry Semester:Even 2019-20

Time: 03Hrs. Max. Marks:40

1	Measure the activity of alkaline phosphatase. (Ap)	10	CO2
2	Calculate the amount of enzymne from the data collected from the experiment. (U)	10	C01
3	Note book	10	CO1, CO2, CO3
4	Viva Voce	10	CO1, CO2, CO3

BIC11007	Human Physiology (Theory)	L	Т	Р	C
Version 1.0	Contact Hors: 60	3	1	0	4
Pre-requisites/Exposure	Knowledge of Biology at 10+2 level				
Co-requisites	-				

Course Objectives

- 1. To gain a deeper understanding about the organization of buffering system of body fluid
- 2. To acquire the knowledge anatomical and physiological organization of respiratoryand circulatory system of human body.
- 3. To acquire the knowledge about the biochemical basis of food digestion.
- 4. To gain the knowledge about biochemical basis of kidneyfunction.
- 5. To understand the biochemical properties of the excitable tissue.

Course Outcomes

On completion of this course, the students will be able to

- CO1. Develop the concept about homeostasis and organization of body fluid compartments.
- CO2. Illustrate their knowledge biochemistry in the respiratory and cardiovascularphysiology.
- CO3. Explain their knowledge biochemistry in the digestive and renalphysiology.
- CO4. Demonstrate the behaviour of excitable tissue like nerve and muscle.
- CO5. Develop their concept about determination of sex and sexual differentiation

Catalogue Description

Physiology is the scientific study of functions and mechanisms in a living system. As a subdiscipline of biology, physiology focuses on how organisms, organ systems, individual organs, cells,andbiomoleculescarryoutthechemicalandphysicalfunctionsinalivingsystem.Centralto physiological functioning are biophysical and biochemical processes, homeostatic control mechanisms, and communication between cells. Physiological state is the condition of normal function of human body and other living system. These normal functions are response of some specificbiochemicalconsequencesofthelivingsystem.Sohowtobiochemicalreasonistranslated into physiological response, that is the goal of thispaper.

Course Content

1. Homeostasisandtheorganizationofbodyfluidcompartments:Intracellular, extracellular and interstitial fluid. Homeostasis, control system and their components. Plasma as an extracellular fluid, RBC, molecular mechanism of blood coagulation, role of vitamin K in coagulation, anticoagulant and fibrinolytic systems. Anemias, polycythemia, haemophilia andthrombosis.

[10 lecture hours]

2. Cardiovascular physiology: Pressure, flow and resistance. Anatomy of heart. Physiology of the cardiac muscle, automacity of the cardiac muscle contraction, excitation contraction coupling, relationship between cardiac cycle, heart sound, ventricular volumes and the ECG, control of cardiac function and output. The arterial system, venous system, the microcirculation and mechanics of capillary fluid exchange. Control of blood flow to the tissues. Portal circulations. Arterial pressure and its regulation. Hypertension, congestive heart disease, atherosclerosis and myocardialinfarction.

[10 lecture hours]

3. Respiration: Organization of the pulmonary system. Mechanism of respiration, pulmonary ventilation and related volumes, pulmonary circulation. Principles of gas exchange and transport. Regulation of respiration. Pulmonary oedema and regulation of pleural fluid. Hypoxia, hypercapnea, pulmonary distress, emphasema, ARDS.

[10 lecture hours]

4. **Renal physiology:** Anatomy of the kidney and the nephron. Regulation of renal blood flow. CellbiologyoftheBowmans'capsule. PhysiologyofglomerularfiltrationandGFR.Tubular processing of the glomerular filtrate. Micturition reflex and voluntary control of micturition. Regulation of ECF electrolyte and water content, blood volume and long termblood pressure. Blood buffer systems, renal and pulmonary control of blood pH, renal clearance. Assessment of kidney function. Acidosis and alkalosis. Glomerular nephritis, renal failure, dialysis anddiuretics.

[10 lecture hours]

5. Gastrointestinal and hepatic physiology: Histology of the gastrointestinal tract. Propulsion and motility of food and digested material. Enteric reflexes, secretory functions of the gastrointestinal tract, digestion and absorption of macro and micronutrients. Peptic ulcer, Sprue, celiac disease, IBD, regurgitation, diarrhoea and constipation. Anatomy of the hepatic lobule and blood flow into the liver. Formation and secretion of bile. enterohepatic cycle, reticuloendothelial system, metabolic importance of liver. Liver function tests. Jaundice,liver cirrhosis and fattyliver.

[10 lecture hours]

6. Musculosketetal system: Bone structure and formation. Physiology of muscle contractionin striated and non-striatedmuscle.
 [8 lecture bours]

[8 lecture hours]

7. Reproductivephysiology:Sexdeterminationanddifferentiation.Developmentoffemale and male genital tracts. Spermatogenesis, capacitation and transport of sperm, bloodtestis barrier. Ovarian function and its control. Uterine changes, fertilization and implantation. Placenta as a feto- maternal unit, gestation andparturition.
 [2 lecture hours]

Reference Books

1. Vander's Human Physiology (2008) 11 thed., Widmaier, E.P., Raff, H. and Strang,K.T., McGraw Hill International Publications (New York), ISBN:978-0-07-128366-3.

- 2.Harper's Biochemistry (2012) 29 thed., Murray, R.K., Granner, D.K., Mayes and PA, Rodwell, V.W., Lange Medical Books/McGraw Hill.ISBN:978-0-07-176-576-3.
- 3. Textbook of Medical Physiology (2011) 10 thed., Guyton, A.C. and Hall, J.E., Red Elseviers India Pvt. Ltd. (New Delhi). ISBN:978-1-4160-4574-8.
- 4.Fundamental of Anatomy and Physiology (2009), 8 thed., Martini, F.H. and Nath, J.L., Pearson Publications (San Francisco), ISBN: 10:0-321-53910-9 / ISBN: 13:978-0321-53910-6.Chemistry of Nucleic acids, Adams.

Modes of Evaluation: Quiz/Assignment/ presentation/ extempore/ Written Examination Examination Scheme:

Components	Mid Term	Attendance	Class Assessment	End Term
Weightage (%)	20	10	30	40

	Mapping between COs and POs							
	Course Outcomes (COs)	Mapped Program Outcomes						
CO1	develop the concept about homeostasis and organization of body fluid compartments.	PO1, PO2, PO3, PO5						
CO2	demonstrate their knowledge biochemistry in the respiratory and cardiovascular physiology.	PO1,PO2, PO3,PO6						
CO3	illustrate their knowledge biochemistry in the digestive and renal physiology.	PO1, PO2, PO3, PO5, PO7						
CO4	explain the behaviour of excitable tissue like nerve and muscle.	PO1, PO2, PO3, PO4, PO6						
CO5	develop their concept about determination of sex and sexual differentiation.	PO1, PO2, PO4, PO5, PO6						

Relationship between the Course Outcomes (COs) and Program Outcomes (POs)

		Fundamental Knowledge	Critical Thinking	Skill	Technical Knowledge	Logical Thinking	Problem Identification Ability	Analytical Knowledge	Career Goals	Team Work	Sustainable Development to Environment	Development to Society.	Development to Humanity
Course Code	Course Title	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
BIC11007	Human Physiology	3	3	3	2	2	3	1	-	1	-	-	-

1=weakly mapped

2= moderately mapped

3=strongly mapped

Model Question Paper

Name:		
Enrolment No:	ADAMAS UNIVERSITY PURSUE EXCELLENCE	
Courses DIC11007 Human Dhysiology		

Course: BIC11007 –Human Physiology

Program: B.ScBiochemistry Semester:Even 2020-21 Time: 03 Hrs. Max. Marks:40

Instructions:

Attempt any three questions from **Section A** (each carrying 4 marks); any **Two Questions** from **Section B** (each carrying 10 marks).

	Section A			
1.	Describe the steps of erythropoiesis in red bone marrow. (R)	5	CO2	
2.	Discuss the role of TDF and SOX-9 genes in male sex determination. (U)	5	C05	
3.	If you will apply the second stimulus within the latent period and starting of period of contraction differently,then what willbe the alteration inmuscle	3 2	CO4	

	twitch?(Explain through the curve) (An)		
4.	Describe the physiological functions of glutamate and GABA. What will happen if the area 44, area 17 and area 39 is abolished from your cerebral 	3 2	CO4
5.	What is saltatory conduction? How nerve impulse is transmitted along the length of the axon?(explain with graphical presentation). Why anterior hypothalamus is called centre of sweating and what is its relation with posterior hypothalamus?(explain with the case of fever) (An)	2 5 3	CO3
6.	Howhaemoglobin maintains the pHof blood plasma and red blood cell upon oxygenation and carboxygenation? Why the person with O+ bloodgroup candonateonlypackedRBCtoaperson of A+ blood group, not wholeblood, although O is the universal donor? What is thrombocytopenia? "The renal threshold value of urea is 15"-what does it mean? (R)	4 3 1 2	CO1 CO2
7.	What do you mean by obligatory urine volume. Write down its normal value. How hypertonic urine is formed by juxtamedullary nephrons during water deficit of the body? What is Bence Jones protein? Write down the pH value of urine. (R)	2 4 1 2 1	CO3

BIC12008	Human Physiology Lab	L	Т	Р	С
Version 1.0	Contact Hours: 45	0	0	3	2
Pre-requisites/Exposure Knowledge of Biology at 10+2 level					
Co-requisites	Human Physiology				

Course Objectives

- 1. To gain a deeper understanding about the organization of buffering system of body fluid
- 2. To understand anatomical and physiological organization of respiratory and circulatory system of human body.
- 3. To analyse the biochemical basis of food digestion.
- 4. To analyse the biochemical basis of kidneyfunction.
- 5. To gain knowledge about the biochemical properties of the excitable tissue.

Course Outcomes

On completion of this course, the students will be able to

CO1.	Determine RBC and WBC count fromblood.
CO2.	Identify the histological slides of different mammaliantissue.
CO3.	Evaluate the concentration of haemoglobin fromblood.
CO4.	Illustrate and fractionate plasmaproteins.
CO5.	Evaluate the activities of different types of LDH fromserum.

Catalogue Description

Physiology is the scientific study of functions and mechanisms in a living system. As a subdiscipline of biology, physiology focuses on how organisms, organ systems, individual organs, cells,andbiomoleculescarryoutthechemicalandphysicalfunctionsinalivingsystem.Centralto physiological functioning are biophysical and biochemical processes, homeostatic control mechanisms, and communication between cells. Physiological state is the condition of normal function of human body and other living system. These normal functions are response of some specific biochemical consequences of the living system. So how to analyze biochemical reason which are responsible to translate into physiological response, that is the goal of thispaper.

Course Content

- 1. Hematology-RBC and WBCcounting. [10 LectureHours]
- 2. Estimation of haemoglobin. [10 LectureHours]
 - 3. Whole protein estimation from serum. [10 LectureHours]
- 4. Whole Carbohydrate estimation from serum. [10 LectureHours]
 - 5. Estimation of clotting time. [5 LectureHours]
 - 6. Estimation of Blood Pressure. [5 LectureHours]
- 7. Estimation of Hb. [5 LectureHours]
 - 8. Case studies (Identification of Histological Slides). [5 Lecture Hours]

Reference Books

- 1. Vander's Human Physiology (2008) 11 thed., Widmaier, E.P., Raff, H. and Strang,K.T., McGraw Hill International Publications (New York), ISBN:978-0-07-128366-3.
- 2. Harper's Biochemistry (2012) 29 thed., Murray, R.K., Granner, D.K., Mayes and PA, Rodwell, V.W., Lange Medical Books/McGraw Hill.ISBN:978-0-07-176-576-3.

3. Textbook of Medical Physiology (2011) 10 thed., Guyton, A.C. and Hall, J.E., Reed Elseviers India Pvt. Ltd. (New Delhi). ISBN:978-1-4160-4574-8.

Modes of Evaluation: Quiz/Assignment/ presentation/ extempore/ Written Examination Examination Scheme:

Components	Mid Term	Attendance	Class Assessment	End Term
Weightage (%)	20	10	30	40

Relationship between the Course Outcomes (COs) and Program Outcomes (POs)

Mapping between COs and POs		
	Course Outcomes (COs)	Mapped Program Outcomes
CO1	determine RBC and WBC count from blood.	PO1,PO2, PO3,PO7
CO2	identify the histological slides of different mammalian tissue.	PO1,PO2, PO6,PO7
CO3	evaluate the concentration of haemoglobin from blood.	PO1, PO3, PO6, PO7
CO4	analyseand fractionate plasma proteins.	PO1, PO3, PO5, PO6
CO5	evaluate the carbohydrates from serum.	PO1, PO3, PO4, PO5, PO9

BIC12008	Course Code	
Human Physiology Lab	Course Title	
3	PO1	Fundamental Knowledge
1	PO2	Critical Thinking
3	PO3	Skill
2	PO4	Technical Knowledge
2	PO5	Logical Thinking
3	PO6	Problem Identification Ability
3	PO7	Analytical Knowledge
I	PO8	Career Goals
1	PO9	Team Work
	PO10	Sustainable Development to Environment
- POI Developmen		Development to Society.
	PO12	Development to Humanity

1=weakly mapped 2= moderately mapped 3=strongly mapped

Model Question Paper

Name: Enrolment No:		ADA UNIV PURSUE I	EXCELLENCE
	Course: BIC12008 –Human	Physi	
Program: B.ScB Semester:Odd 2	•		Time: 03 Hrs. Max. Marks:40
	questions from Section A (each carry carrying 10 marks) is Compulsory.	ving 10) marks); any Two Questions from
	Section A (Attempta	ny Th	ree)
1.	Identify the specimen of the two given slides (Ap), write down their specific characteristics (An)	5 5	CO1 CO2
2.	Estimate the albumin: globulin(A:G) from the supplied serum sample using the standard curve of BSA with biuret reagent(Ap),write down the principle, procedure, observation and inference.(An)	10	CO4
3. Estimate the hemoglobin content from the supplied packed RBC sample (Ap),write down the principle, procedure, observation and inference.(An)			СО3
	SECTION B (Attempt any Two Questions)		
5.	Viva-Voce (U/An/Ap/R)	10	CO1, CO2,CO3, CO4,CO5
6.	Laboratory Note Book(U/An/Ap/Ev)	10	CO1, CO2,CO3, CO4,CO5

EVS 11112	Environmental Science	L	Т	Р	С
Version 1.1	Contact Hours – 30	3	1	0	2
Pre-requisites/Exposure	Basic physics, chemistry, biology and mathematics				
Co-requisites					

Course Objectives

- 1.To understand the intrinsic relation between humans and environment, our position in hecosystem aroundus
- 2. To comprehend the significance of the biodiversity surrounding us.
- 3. To figure out the importance and need for energy resources, various sources of energy, renewable and non-renewable sources, conventional and unconventionalsources.
- 4. To have basic concepts about sustainability, our dependence on nature and **he**consequences of overexploitation.
- 5. To enable students to appreciate the importance and how much we owe to the eathsystems for oursurvival.
- 6. To have a basic concept about the types of pollution and mitigation procedures.
- 7. To have an overall idea about the environmental legal framework in our country **aub**bout the EIA and environmental auditprocedures.

Course Outcomes

On completion of this course, the students will be able to

CO 1: **Explain** multidimensional complex nature of environmental problems, various types of ecosystems, ecosystem dynamics, perceive and appreciate the surrounding nature.

CO 2: **Illustrate** the intrinsic relation between humans and environment, our position in the ecosystem around us, and importance of biodiversity.

CO 3: **Comprehend** the presence of various pollutants, their significance, and impacts, and develop the underlying concepts involved in various air pollution prevention and mitigation measures.

CO4: **Define** theroutes of generation, classification, management, and environmental significance of solid waste.

CO 5: **Demonstrate** water chemistry, deduce the relationship between various water pollutants, and understand the principles of various water and wastewater treatment procedures.

CO 6: Create awareness and concern about importance of environmental resources and their damage and protection.

Catalogue Description

Todistinguishbetweenvarioustypesofecosystems,ecosystemdynamics,perceiveandappreciate the surrounding nature and feel connected, develop the concept of innate relationship of humans and biodiversity, need for conservation and different conservation strategies. The students will be developed in a way so that they can spontaneously comprehend the importance of studying about the various air pollutants, their significance and impacts, and develop the underlying concepts involved in various air pollution prevention and mitigation measures, understand fundamental water chemistry, deduce the relationship between various water pollutants, and understand the principles of various water and wastewater treatment procedures.

They will understand the routes of generation, classification, management and environmental significance of solid waste, apply the basic concepts of waste management in their daily lives, understand the need of the 5Rs of waste management, importance of wasteminimization.

Detailed syllabus

Unit I: [5 Lecture Hours]

Multidisciplinary nature of environmental sciences; scope and importance; need for public awareness; concept of sustainability and sustainable development

Forest resources: Function of forests, cause and effects of deforestation, case studies.

Water resources: distribution of water, hydrological cycle, use and over-utilization of surface and ground water, floods, drought, conflicts over water, dams-benefits and problems

Mineral resources: Use and exploitation, environmental effects of extracting and using mineral resources, case studies

Food Resources: World food problems and environmental concern, Food security, case studies Energy resources: Concept of energy, SI Units of Work, Heat and Power, World energy use, Energy consumption pattern in India and U.S., Environmental aspects of energy utilization Renewable and non-renewable sources; Fossil fuel: types, use and environmental impacts, Solar energy: Solar Radiation – Passive and active solar systems – Flat Plate and Concentrating Collectors – Solar direct Thermal Application– Fundamentals of Solar Photo Voltaic Conversion- advantages and disadvantages of Solar Power generation, Solar energy status in India; Wind Energy: site selection, Wind turbine: basic working principle and types, Wind energy status in India, advantages and disadvantages of Wind Power generation; Hydroelectric power : How is it generated, advantages and disadvantages; Biomass energy: various types, generations of biofuel, Biogas plants, Bio diesel; Geothermal Energy: source, advantages and disadvantages, Nuclear Power: nuclear fission, moderation of reaction, nuclear reactor: pressurized water reactor, advantages anddisadvantages

Unit II: Ecosystems [5 Lecture Hours]

Concept of an ecosystem, Structure and function of an ecosystem, Producers, consumers and decomposers, Food chains, food webs and ecological pyramids, energy flow, ecological succession

Unit III: Biodiversity and its conservation [5 Lecture Hours]

LevelsofBiodiversity:genetic,speciesandecosystemdiversity.Biogeographicalclassificationof India, Values of biodiversity, Biodiversity at global, National and local levels, India as a megadiversity nation, Biodiversity hotspots, Threats to Biodiversity, In-situ and Ex-situ conservation ofBiodiversity

Unit – **IV: Environmental Pollution and Waste Management [10 Lecture Hours]** Environmental pollution: types, causes, effects and controls; Air, water, soil and noise pollution, marine pollution; case studies. Nuclear hazards and human health risks.

Sources and generation of solid wastes, their characterization, chemical composition and classification. Different methods of disposal and management of solid wastes (Hospital Wastes andHazardousWastes)Recyclingofwastematerial.Wasteminimizationtechnologies.Hazardous Wastes Management and Handling Rules,1989

Unit – V: Global Issues and Environmental Acts [5 Lecture Hours]

Climate change, global warming, acid rain, ozone layer depletion, nuclear accidents. Environment Laws: EnvironmentProtectionAct; Air (Prevention & Control of Pollution) Act; Water (Prevention and control of Pollution) Act; Wildlife Protection Act; Forest Conservation Act. International agreements: Montreal and Kyoto protocols and Convention on Biological Diversity(CBD).

Text Books:

1.Principles of Environmental Science, 4th edition by Cunningham, W.P. and Cunningham, M.A. (2002), Tata McGraw-Hill Publishing Company, New Delhi

2.Basic Environmental Engineering & Elementary Biology by MonidranathPatra and Rahul Kumar Singha, Aryan Publishinghouse

3. Introduction to Environmental Engineering and Science, by Masters, G.M., Prentice Hall of India, Second IndianReprint.

Reference Books:

1 Wastewater Engineering: Treatment and Reuse, 4th Edition, Metcalf and Eddy, Inc. McGraw-Hill, Inc., New York, 2002

2 Environmental Engineering", Howard S. Peavy, Donald R. Rowe and George Tchobanoglous, McGraw-Hill Education (India) Private Limited, New Delhi

3 Introduction to Environmental Engineering, 2nd Ed. by Davis, M. L. and Cornwell D. A. McGraw Hill, Singapore.

4 Environmental Sciences: The Environment and Human Impact by Jackson, A.R.W. and Jackson, J.M., , Longman Publishers

Modes of Evaluation: Quiz/Assignment/ presentation/ extempore/ Written Examination Examination Scheme:

Components	Mid Term	Attendance	Class Assessment	End Term
Weightage (%)	20	10	30	40

Mapping betw	Mapping between COs and POs			
	Course Outcomes (COs)	Mapped Program Outcomes		
C01	Describe multidimensional complex nature of environmental problems, various types of ecosystems, ecosystem dynamics, perceive and appreciate the surrounding nature.	PO1, PO2, PO10, PO12		
CO2	Explain the intrinsic relation between humans and environment, our position in the ecosystem around us, and importance of biodiversity.	PO1, PO2, PO10, PO11, PO12		
СО3	Comprehend the presence of various air pollutants, their significance, and impacts, and develop the underlying concepts involved in various air pollution prevention and mitigation measures.			
CO4	Define the routes of generation, classification, management, and environmental significance of solid waste.	PO6, PO11 PO12		
CO5	Demonstrate water chemistry, deduce the relationship between various water pollutants, and understand the principles of various water and wastewater treatment procedures.	PO5, PO6, PO10		
CO6	Create awareness and concern about importance of environmental resources and their damage and protection.	PO10, PO11, PO12		

Relationship between the Course Outcomes (COs) and Program Outcomes (POs)

EVS 11112	Course Code	
Environment al Science and Energy Resources	Course Title	
3	PO1	Fundamental Knowledge
2	PO2	Critical Thinking
,	PO3	Skill
1	PO4	Technical Knowledge
2	PO5	Logical Thinking
2	PO6	Problem Identification Ability
	PO7	Analytical Knowledge
1	PO8	Career Goals
	PO9	Team Work
3	РО 10	Sustainable Development to Environment
2	РО 11	Development to Society.
	PO12	Development to Humanity

1=weakly mapped 2= moderately mapped 3=strongly mapped

Name: Enrolment No:

Course: EVS 11112–Environmental science Program: B.Sc. Biochemistry Semester:Even2020-21

Time: 03Hrs. Max. Marks: 40

Instructions:

Attempt any **five questions** from **Section A** (Each Carrying 2 Marks); any **four questions** from **Section B** (Each Carrying 5 Marks). Any **one question from Section C** (Carrying 10Marks). **SECTION A** (Answer any five questions) (5 x 2 = 10)

	e 1101 (Auswei any five questions) (5 x 2 - 10)					
1.	What information about any ecosystem are conveyedby ecological pyramids?	Remembering	CO1			
2.	Give one example for each.Understandinga. Inverted pyramid of number; b. Inverted pyramid of biomassUnderstanding					
3.	A sample of sewage water has 4-day 20°C BOD value of 60% of the final. Find the rate constant per day.	Applying	CO5			
4.	Mention few problems associated with large dams?	Remembering	CO6			
5.	What are the different types of wind turbine?	Remembering	CO6			
6.	What is PV cell? What are the diverse applications of solar energy unlike other renewable energy resources?	Remembering	CO3			
SE	CTION B (Attempt any four questions) (4 x 5 = 20)					
1.	What is electrostatic precipitator? What are the advantages of electrostaticprecipitator?(1+2+2=5)	Understanding	CO3			
2	What is "Dobson unit"? What is ozone hole? How does it happen chemically inthestratosphere?(1+1+3=5)	Remembering	CO9			
3.	What are the adverse effects of open dumping of municipal solid wastes on environment? How does sanitary landfill differ from open dumping? (3+2=5)	Analysing	CO4			
4.	Describe the distribution of water resources. Remembering Co					
5.	What are the fundamental steps involved in an EIA? Draw a simple flowchart describing the steps that are followed in an EIA process in India. (2+3=5)	Remembering	CO8			
SE	CTION C (Attempt any one question) (1 x 10 = 10)					
1.	What are the various methods for water resources management? What is integrated solid waste management? How does it differ from the age-old conventional system of solid waste management in India? (5+3+2=10)	Applying	CO6			
2.	How is photochemical smog formed? What are effects of photochemical smog? Discuss the factors affecting photochemical smog? (4+3+3=10)	Understanding	CO3			

IDP14001	Interdisciplinary Project	L	Τ	Р	C
Version 1.0		2	0	0	3
Pre-requisites/Exposure	Ire PLUS TWO LEVEL BIOLOGY/SCIENCE		I		
Co-requisites	Basic subject knowledge of Semester I				

Course Objectives

1. This will enable students to design and evaluate scientific investigations of interdisciplinary nature.

2. Students will learn to deduce evidence-based conclusions in collaboration with others.

3. Skill of presentation and scientific content writing will beimproved.

Course Outcomes

On completion of this course, the students will be able to

CO1. comprehend novel interdisciplinary ideas to enrich their scientific interest.

CO2. **explain** the theoretical and practical knowledge for identification, estimating different molecules and their applications.

CO3. compare different techniques and analyze the results obtained.

CO4. evaluate scientific investigations of interdisciplinary nature.

CO5. illustrate evidence-based conclusions.

Catalogue Description

The core-course of 'interdisciplinary project' will enable the students to nurture their research interest by compiling knowledge obtained different subjects during their education together with novel ideas. An idea about appropriate application of various skills for industrial and research purposecanbedeveloped. With the potential to design and evaluatescientific investigations to the students, who will learn to comprehend conclusions based on experimental evidences. The entire literature review work and experimentation focuses on practical implementation of knowledge in a collaborative environment. Students will perceive the basic concepts of the subject via exercise and discussions with thementor(s).

Modes of Evaluation: Quiz/Assignment/ presentation/ extempore/ Written Examination Examination Scheme:

Components	Project Thesis	Presentation
Weightage (%)	50	50

Relationship between the Course Outcomes (COs) and Program Outcomes (POs)

Mapping b	Mapping between COs and POs				
	Course Outcomes (COs)	Mapped Program Outcomes			
CO1	comprehend novel interdisciplinary ideas to enrich their scientific interest.	PO1, PO2, PO5, PO6, PO9			
CO2	explain their theoretical and practical knowledge for identification, estimating different molecules and their applications.	PO1, PO2, PO3, PO4, PO7			
СО3	compare different techniques and analyze the results obtained.	PO1, PO2, PO5, PO6, PO7			
CO4	illustrate scientific investigations of interdisciplinary nature.	PO2,PO6, PO7,PO9,			
CO5	evaluate evidence-based conclusions.	PO1, PO2, PO3, PO4, PO7			

1DP140 01	Course Code	
Interdiscipli nary Project	Course Title	
ω	РО 1	Fundamental Knowledge
3	РО 2	Critical Thinking
2	РО 3	Skill
2	PO 4	Technical Knowledge
2	PO 5	Logical Thinking
ω	6 O	Problem Identification Ability
ω	РО 7	Analytical Knowledge
'	8 8	Career Goals
2	PO 9	Team Work
1	PO1 0	Sustainable Development to Environment
'	PO1 1	Development to Society.
ı	PO1 2	Development to Humanity

1=weakly mapped 2= moderately mapped 3=strongly mapped

BOT 11003	ELECTIVE BOTANY – II (Theory)	L	Τ	Р	C
Version 1.0	Contact Hours - 60	3	1	0	4
Pre-requisites/Exposure 12 th with Biology as one subject					
Co-requisites	-				

Course Objectives:

- 1. Students will be able to develop basic knowledge in higher groups of plants and also be abto understand various branches of Botany for understanding indetails;
- 2. Students will learn practical implementations of various branches of plant science and ther and commercial exploitations;
- 3. Students will be able to develop fundamental knowledge about surrounding ecosphere **ad**biosphere and their corelations.

Course Outcomes

On completion of this course, the students will be able to

CO1. **Illustrate** in detail about *Moses and Ferns* in various aspects and also their implementation for commercial purposes;

CO2. **Explain** and Categorize in detail various divisions of *Gymnosperms* and their commercial importance as well harmful effects;

CO3. **Develop** basic knowledge in Angiospermic plants and also be able to understand various divisions for understanding in details;

CO4. **Demonstrate** fundamental knowledge about surrounding ecosphere and biosphere and their corelations;

CO5. **Explain** and summarize the basic concept of pharmacognosy and also can be able implement this knowledge in applied fields;

CO6. **Develop** fundamental knowledge in plant biotechnology and can be implemented this skill for cultivation practices and commercial uses.

Catalogue Description

Elective Botany II lecture course covers a vast range of basic plant science. The course takes a broader approach and covers many aspects of higher group of plants as well fundamental knowledge of surrounding environments and their corelations. Moreover, this curriculum covers a practical approach for understanding implementation of gaining knowledge in industrial field. Classroom activities will be designed to encourage students to play an active role in the

construction of their own knowledge and in the design of their own learning strategies. We will combinetraditional lectures with other active teaching methodologies using digital platforms, suchas analysis of video scenes and debates. Students will be encouraged to actively take part in all group activities and to give an oral group presentation. Students will be expected to interact with media resources, such as, web sites, videos, DVDs, and newspapersetc.

CourseContent:	(60hours)
UNITI	(10hours)

Moses and Ferns:

Bryophytes: Introduction, Basic classifications, Diagnostic characters of important families with examples, Economic importance.

Pteridophytes: Introduction, Basic classifications, Diagnostic characters of important families with examples, Economic importance.

UNITII

Gymnosperms: Introduction, Basic classifications, Diagnostic characters of important families with examples, Economic importance.

UNITIII

Angiosperm: Brief ultra-structure of plant cell and tissues, Brief description of Plant Architecture (vegetative and reproductive parts); Taxonomic Definitions, principles, Outline of the system of classification with examples, Herbarium, ICBN(ICN), Diagnostic features of important angiospermic families.

UNITIV

PlantEcology:Populationandcommunityecology,EcologicalSuccession,MajorEcosystemsand ecological adaptations, Environmental Pollution and its effects on plants, Biodiversity and conservation, Bio/Phytoremediation and their environmental significance.

UNITV

A brief idea about pharmacognosy, discuss about- active principles; *Pharmacognosy:* Pharmacopeia and adulteration; Study of the following drug plants (Diagnostic features, active principles and uses): Rauwolfiaserpentina(root), Adhatodavasica(leaf),

Strychnosnuxvomica(seed), Cinchona succirubra(bark), Business review of herbalindustry.

UNITVI

Plant Biotechnology: Plant Tissue Culture: Introduction, Composition of media; Nutrient and hormone requirements, Types, Applications, In vitro germplasm conservation; Methods of gene transfer: Agrobacterium-mediated, Direct gene transfer methods;

(12hours)

(7hours)

(8hours)

(10hours)

(13hours)

Applications of Biotechnology: Problems and prospects of transgenic crops and their commercial utilizations

Text Books

1 Bhojwani S S&Dantu P K Plant Tissue Culture: An introductory text

2. Odum, E. P. 1971. Fundamentals of Ecology. W.B Sounders Co., Philadelphia

3. TrigianoR N & Gray D J Plant Tissue Culture, Development andBiotechnology

4. Trease& Evans: Pharmacognosy

Reference Books

1. College Botany Vol. II ByGangulee andKar

2. Studies in Botany Vol I & II by J.N. Mitra, D. Mitra, S.K. Chaudhuri

Modes of Evaluation: Quiz/Assignment/ presentation/ extempore/ Written Examination Examination Scheme:

Components	Mid Term	Attendance	Class Assessment	End Term
Weightage (%)	20	10	30	40

Relationship between the Course Outcomes (COs) and Program Outcomes (POs)

	Mapping between COs and POs	
	Course Outcomes (COs)	Mapped Program Outcomes
CO1	illustrate in detail about <i>Moses and Ferns</i> in various aspects and also their implementation for commercial purposes	PO1, PO2, PO5
CO2	explain and Categorize in detail various divisions of <i>Gymnosperms</i> and their commercial importance as well harmful effects	PO1, PO2, PO4
CO3	illustrate basic knowledge in Angiospermic plants and also be able to understand various divisions for understanding in details	PO1, PO4, PO6
CO4	develop fundamental knowledge about surrounding ecosphere and biosphere and their corelations	PO1, PO3, PO5
CO5	explain and summarize the basic concept of pharmacognosy and also can be able implement this knowledge in applied fields	PO1, PO2, PO3
CO 6	develop fundamental knowledge in plant biotechnology and can be implemented this skill for cultivation practices and commercial uses	PO1, PO3, PO6, PO8

		Fundamental Knowledge	Critical Thinking	Skill	Technical Knowledge	Logical Thinking	Problem Identification Ability	Analytical Knowledge	Career Goals	Team Work	Sustainable Development to Environment	Development to Society.	Development to Humanity
Course Code	Course Title	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
BOT 11003	ELECTIVE BOTANY - I (THEORY)	3	3	1	-	2	1	-	1	-	-	-	-

1=weakly mapped

2= moderately mapped

3=strongly mapped

Model Question Paper

Nan	ne:					
Enr	olment No:	ADAMAS UNIVERSITY PURSUE EXCELLENCE	5			
Cou	rse: BOT 11003-ELECTIVE BOTANY - II(THE	ORY)				
Prog	gram:B.Sc.Biochemistry	Time	: 03 Hrs.			
Sem	Semester:Odd2019-20		Max. Marks:40			
Atte Sect	ructions: mpt any four questions from Section A (each car ion B (each carrying 10 marks). CTION A (Attempt any Four questions)	rying 5 marks); any two	questions from			
1.	1. Why 'Pteridophytes are claimed as the first true land plants not Bryophytes' explain in details under the light of their morphological and anatomical structure. (An)		CO1			
2.	Mention the steps of Production of natural drug (R)	products. 5	CO5			

3.	Write down the subsequent steps of making herbarium sheet. (R)	5	CO3
4.	Briefly discuss about the Population and community ecology. (R)	5	CO4
5	Mention the key differences between plant tissue culture and open field culture. (R)	5	CO6
	SECTION B (Attempt any Two questions)		
6.	 (a) Bryophytes and other plants have a common ancestor, but neither is ancestral to the other- justify with suitable comparison.(An) (b) Mention the Medicinal use of Bryophytes.(R) 	6+4	CO1
7.	 (a) Define Plant Tissue Culture.(R) (b) Discusstheirachievements, advantages and limitations. (R) 	3+7	CO6
8.	 (a) Elaborately discuss the characteristic features of Solanaceae family.(R) (b) Draw and label the ultra-structure of a typical plant cell. (U) 	5+5	CO3
9	Briefly explain the Basic classifications of Gymnosperm with suitable examples. (U) Mention the key differences between Gymnosperms and Angiosperms. (R)	7+3	CO2

BOT 12004	Elective Botany II LAB(Practical)	L	Т	Р	С
Version 1.0	Contact Hours - 45	0	0	3	2
Pre-requisites/Exposure	12 th with Biology as one subject				
Co-requisites	Elective Botany I				

Course Objectives:

1. Students will be able to demonstrate and design with hands-on activities for applied

plantscience experiments inlaboratory;

2. Students will be able to implement acquired knowledge in commercial field in ap improvement.

Course Outcomes

On completion of this course, the students will be able to

CO1. Develop their skill by hands on training in laboratory Experiments on Imbibition in Plants

CO2. Design and demonstrate Root Pressure in Plants;

CO3. Explain by performing Demonstration of opening & closing of stomata;

CO4. **Develop** fundamental knowledge and can be implemented this skill for demonstrating Transpiration in Plants;

CO5. **Design** and explain Demonstration of respiration;

CO6. Demonstrate and design experiments for Osmosis in Plants;

CO7. **Develop** their skill by hands on training in laboratory Experiments on performing Plasmolysis in Plants

CO8. Illustrate their skill by hands on training in laboratory for Photosynthesis in Plants;

Catalogue Description

Elective Botany practical is a skillen hancement course covers a vastrange of basic as well applied

implementation of knowledge in inherent metabolism of plants as well technical application for betterment for mankind. The course takes a broader approach and covers many spectra of plant physiological phenomena as well fundamental techniques in plant tissue culture using various technical parameters in laboratory scale which broadly covered by demonstration and hands on trainings. Classroom activities will be designed to encourage students to play an active role in the construction of their own knowledge and in the design of their own learning strategies. We will combinetraditionallectureswithotheractiveteachingmethodologiesusingdigitalplatforms, such as analysis of video scenes and debates. Students will be encouragedto actively take part in all group activities and to give an oral group presentation. Students will be expected to interact with media resources, such as, web sites, videos, DVDs, and newspapers etc.

CourseContent:	(60hours)
UNITI Experiments on Imbibition in Plants	(5hours)
UNITII Experiment on Root Pressure in Plants	(5hours)
UNITIII Demonstration of opening & closing of stomata	(5hours)
UNIT IV Experiments on RespirationinPlants	(5hours)
UNITV Experiments on Osmosis in Plants	(5hours)
UNIT V I Experiments on Ascent of Sap in Plants	(5hours)
UNITVII Experiments on Plasmolysis in Plants	(5hours)
UNITVIII	(8hours)
Experiments on Photosynthesis in Plants	
UNITIX Experiments on Plant growth	(7hours)
UNITX Basic plant tissue culture techniques: Media composition and Preparation of med and contamination, Initiation of aseptic cultures from seed, isolated embryos and	

UNIT XI

Local Excursions and Field records

Text Books

- 1. Hopkins, W.G. and Huner, P.A. 2008 Introduction to Plant Physiology. John WileyatSons.
- 2. Plant cell culture A practical approach by DixionRA.1995

Reference Books

1. Practical Botany, Volume II, S CSamanta

Modes of Evaluation: Quiz/Assignment/ presentation/ extempore/ Written Examination Examination Scheme:

Components	Mid Term	Attendance	Class Assessment	End Term
Weightage (%)	20	10	30	40

Relationship between the Course Outcomes (COs) and Program Outcomes (POs)

	Mapping between COs and POs	
	Course Outcomes (COs)	Mapped Program Outcomes
CO1	develop skill by hands on training in laboratory Experiments on Imbibition in Plants	PO1, PO2, PO3, PO8
CO2	design and demonstrate Root Pressure in Plants	PO1, PO2, PO5
CO3	explain by performing Demonstration of opening & closing of stomata	PO1, PO3, PO4, PO5
CO 4	design and explain Demonstration of respiration	PO1, PO2, PO5
CO 5	demonstrate and design experiments for Osmosis in Plants	PO1, PO3, PO4
CO 6	illustrate and design experiments on Ascent of Sap in Plants	PO1, PO2, PO4
CO7	develop their skill by hands on training in laboratory Experiments on performing Plasmolysis in Plants	PO1, PO3, PO6
CO8	explain the importance of plant growth and development by demonstration and hands on training	PO1, PO2, PO8

BOT 12004	Course Code	
PLANT PHYSIOLOGY (THEORY)	Course Title	
S	PO1	Fundamental Knowledge
S	PO2	Critical Thinking
S	PO3	Skill
<u> </u>	PO4	Technical Knowledge
2	PO5	Logical Thinking
<u> </u>	PO6	Problem Identification Ability
ı	PO7	Analytical Knowledge
-	PO8	Career Goals
ı	PO9	Team Work
	PO10	Sustainable Development to Environment
I	PO11	Development to Society.
1	PO12	Development to Humanity

1=weakly mapped 2= moderately mapped 3=strongly mapped

]	Model Question	Paper	
Name:				
Enrolment N	lo:			
Program:B.S Semester:Ev Instructions:	two questions from Section	``````````````````````````````````````	Time Max	e: 03Hrs. a. Marks:40 ection B is Compulsory
1.	a) Work out with specin b) Write about the proto observations. (R)		6 4	CO1, C9, C7
2.	Design and anal specimen B.(An)	ysis with	10	CO2, CO3& CO4
3.	Estimate the final outcome with specimen C. (Ap)		10	CO3, CO4, CO5
4.	 a) Demonstrate the provided samples with D. (R) b) Write the procedure 	-	4 6	C8, CO10
	SECTION B is compu	lsory		
5.	Viva-voce		10	CO1, CO2, CO3, CO4, CO5, CO6 CO7, CO8, CO9, CO10
6.	Practical copy		10	CO1, CO2, CO3, CO4, CO5, CO6, CO7, CO8, CO9, CO10

ZOL 11003	ELECTIVE ZOOLOGY II (THEORY)	L	Τ	P	С
Version 1.0	Contact Hours - 60	3	1	0	4
Pre-requisites/Exposure	PLUS TWO LEVEL BIOLOGY				
Co-requisites	Elective Zoology I				

Course Objectives

- 1. To provide those students with some biology background with an introduction to ecology and the study of evolution. This course is designed for students of any major, but will especially benefit biology majors, as well as secondary science education majors.
- 2. It will also provide an informative elective for 5-8 math/science educationmajors.
- 3.Gathering information about ecological community, biodiversity and its structure aufunction, and how evolutionary concepts and animal behavior enables us to live a more knowledgeable, involved, and environmentally aware life in a science-consciousage.

Course Outcomes

On completion of this course, the students will be able to

CO1. **Illustrate** about habitat and niche, ecotone, edge effect, ecological succession. CO2. **explain** the significance of energy flow inecosystem and ecological succession, variation and ecological process which implement changes in learning towards a sustainable development.

CO3. Compare between population growth curves, life strategies.

CO4. **demonstrate** different animal behaviour, bee dancing which follows future practice of ethicalphilosophies.

CO5. **explain** the problems on density, mortality, natality from fecundity tables and life tables and populationgenetics.

Catalogue Description

This course covers ecological and evolutionary principles on population, community, ecosystem and biodiversity. The very nature of ecology and evolution requires students to view role of evolutionary process, animal behavior on modern human life. All the lectures will be devoted on discussions of basic theories and advanced topics, focusing on practical implementation of knowledge. Classes will be conducted by lecture as well as power point presentation, audio visual virtual lab session as per requirement. The tutorials will familiarize the students with practicalproblem-solvingtechniquesledbythecoursecoordinator.Studentswillstronglygrabthe basic concepts of the subject via exercise and discussions with thecoordinator.

ELECTIVE ZOOLOGY II

GE 2: ECOLOGICAL PRINCIPLES, EVOLUTION AND BIODIVERSITY (THEORY)

Unit 1: IntroductiontoEcology

History of ecology, Autecology and synecology, Levels of organization.

Unit2:Population

Unitary and Modular populations.Unique and group attributes of population: Density, natality, mortality, life tables, fecundity tables, survivorship curves, age ratio, sex ratio, dispersal and dispersion.Exponential and logistic growth, equation and patterns, r and K strategies.Population regulation - density-dependent and independent factors.

Unit3:Community

Community characteristics: species richness, dominance, diversity, Ecotone and edge effect. Ecological succession with one example.

Unit4: Ecosystem

Typesofecosystemswithoneexampleindetail,definition,components,energyflow,foodchain, food web, and ecological pyramids.

Unit 5: Historical review of evolutionary concept5 Lecture Hours

Lamarckism, Darwinism, Neo-Darwinism, Geological time scale.

Unit 6: Sources of variations and Population genetics 10 Lecture Hours

Heritablevariationsandtheirroleinevolution,Hardy-WeinbergLaw(statementandderivation of equation, application of lawto human Population); Evolutionary forces upsetting H-W equilibrium; Natural selection (concept of fitness, selection coefficient, derivation of one unit of selection for a dominant allele, genetic load, mechanism of working, types of selection, density-dependent selection, heterozygous superiority, kin selection, adaptive resemblances, sexual selection.GeneticDrift(mechanism,founder'seffect,bottleneckphenomenon;RoleofMigration and Mutation in changing allele frequencies),Speciation.

Unit 7:AnimalBehaviour

Instinctive and learning behaviour, Fixed action pattern, Communication in honeybees (dance Language), Elements of Sociobiology: Altruism and selfishness.

Unit8:Biodiversity

8 LectureHours

7 LectureHours

Basic concept of Biodiversity, Biodiversity hotspots, Conservation of wild life- purpose & methods, concept of Biosphere Reserve, importance & strategies of wildlife conservation;

8 LectureHours

9 LectureHours

-9 LectureHours

4 LectureHours

conservation act and application. National park& Wildlife Sanctuary, Animal cruelty and prevention act.

Reference Books

- 1. Colinvaux, P. A. (1993). Ecology. II Edition. Wiley, John and Sons, hc
- 2. Krebs, C. J. (2001). Ecology. VI Edition. Benjamin Cummings.
- 3.Odum, E.P., (2008). Fundamentals of Ecology. Indian Edition.Brooks/Cole
- 4. Robert Leo Smith Ecology and field biology Harper and Row publishers
- 5. Ricklefs, R.E., (2000). Ecology. V Edition. ChironPress
- 6. Ridley, M (2004) Evolution III Edition Blackwellpublishing
- 7. Douglas, J. Futuyma (1997). Evolutionary Biology. SinauerAssociates.

Modes of Evaluation: Quiz/Assignment/ presentation/ extempore/ Written Examination Examination Scheme:

Components	Mid Term	Attendance	Class Assessment	End Term
Weightage (%)	20	10	30	40

Relationship between the Course Outcomes (COs) and Program Outcomes (POs)

Mapping b	Mapping between COs and Pos								
	Course Outcomes (COs)	Mapped Program Outcomes							
CO1	illustrate about habitat and niche, ecotone, edge effect, ecological succession.	PO1, PO4, PO5, PO8							
CO2	explain the significance of energy flow in ecosystem and ecological succession, variation and evolutionary process whichimplementchangesinlearningtowardsasustainable development.	PO1, PO2, PO4 PO10							
CO3	compare and analyze between population growth curves, life strategies.	PO1, PO2, PO5, PO6,PO7							
CO4	demonstrate different animal behaviour, bee dancing which follows future practice of ethical philosophies.	PO1, PO3, PO5,PO8							
CO5	explain problems on density, mortality, natality from fecundity tables and life tables and population genetics.	PO1, PO2, PO5, PO6,PO7							

ZOL 11003	Course Code	
ELECTIVE ZOOLOGY II (THEORY)	Course Title	
ယ	PO1	Fundamental Knowledge
2	PO2	Critical Thinking
1	PO3	Skill
2	PO4	Technical Knowledge
ω	PO5	Logical Thinking
2	6	Problem Identification Ability
2	PO7	Analytical Knowledge
2	PO8	Career Goals
1	PO9	Team Work
2	PO10	Sustainable Development to Environment
	PO11	Development to Society.
I	PO12	Development to Humanity

1=weakly mapped 2= moderately mapped 3=strongly mapped

Model Question Paper

Nai	ne:	NDUNAU V	
Eni	rolment No:	AMAS NIVERSITY SE EXCELLENCE	
Coi	rse: ZOL 11003 - ELECTIVE ZOOLOGY II (THEORY)		
Pro	gram:B.Sc. Biochemistry	Time: (. Mark	
			5.10
	tructions:		
	empt any three questions from Section A (each carrying 4 marks); a	ny four	questions
	n Section B (each carrying 7 marks). CTION A (Attemptany Three questions)		
			-
1.	a) What is ecotone? Write two general features of ecotone? (R)		CO1
2.	b) What do you understand about the term 'Edge Species'? (U)	2 4	CO2
∠.	A community in a wood log depends on the neighbouring community, but a forest community doesn't. Explain this statemet	-	
	by clearly mentioning all the factors involved. (An)		
3.	The graph shows the changes in population of bass fish in a lake	2	CO3
	a) Describe the trend in population growth from 1950 to 1990. Give	ve 2	
	an example of something that may have happened in 1990 that		
	affected the bass population. (Ap)		
	b) Explain your reasoning. (An)		
4.	The mule, which is the offspring of a male donkey and a mare, is a	ı 4	CO4
	vigorous animal, well suited for hard work. However, it is sterile.		
	Why? Explain your answer with a proper scientific reason. (An)		
	SECTION B (Attempt any Four questions)		
5.	a)Utilize a proper illustration to explain how a worker b	ee 5	CO4
	caninformotherfellowworkerbeesthatthefoodsourcemaybe fou		CO5
	byflying 30° to the right of the sun when they will leave the bins (An)	he	
	hive.(Ap)b)Does the genetic drift play a more important role in large or a sr	nall	
	population? Explain with proper reasons.(U)	. KUI	
6.	a) Two populations were sampled for distribution of the MN blo	od 3	CO5
	group. Evaluateeach of these two populations is in equilibrium		
	not? (Eva)		
	(i) 2% M, 96% MN, 2 % N		
	(ii) 9% M, 42% MN, 49% N		
	b)If you analysed a population for a trait known to be due to a sing	gle	
	pair of genes and your analysis revealed that the population was r	-	
	inequilibriumforthattrait, what possible reasons could you offer for the		
	lack of equilibrium?(An)		

7.	a) What is mimicry? How examples of both.(U)	does it differ fr	om crypsis? Give		4 3	CO4 CO1
	b) Describe the following the population size.(U)	equation with re	espect to the regula	tion of		
	$N_{t+1}=N_t+B+I-D-E$					
	Clearly write the name o	of all the symbols	s used in the equati	on.(R)		
8.	a)Onaparticularisland,apo by a mountain range. Af the original population co nature of this reform evolutionary processes in	52	CO2 CO4			
	(An) b) What do you mean by I	Batesian mimicr	y? Give example.(I	R)		
9.	a)Whichcountry below has the pyramids above tell ye	-			2	CO1
	b) Using the table calc dominance of the commu which species is dominan	unity. Also you	have to clearly me	-	5	
		B	11			
		C	28			
		D	1			
		E	3			

ZOL 12004	ELECTIVE ZOOLOGY LAB II (PRACTICAL)	L	Τ	Р	С				
Version 1.0	Contact Hours - 45 0 0 3								
Pre-requisites/Exposure	PLUS TWO LEVEL BIOLOGY								
Co-requisites	Elective Zoology								

Course Objectives

- 1. To provide students with hands-on activities designed to encourage interest in the field cology and evolution, as well as promote greater understanding of the concepts presented inlecture.
- 2. Students will need to become proficient with calculations, analysis and applications different types from the hypothetical / dataprovided.

Course Outcomes

On completion of this course, the students will be able to

- CO1. **Identify** and compare between fossil specimens and also learn how to construct phylogenetic tree and draw them.
- CO2. **explain** the importance of field trip and they will get more interest on the subjectas they learn how to work in the field tripeffectively as an individual, and as a member or leader in diverse teams, and in multidisciplinarysettings.
- CO3. **Illustrate.** calculate and analyseShanon-Weiner diversity index for the same community.
- CO4. Solve the analytical problems on Hardy-Weinberg Law by chi square analysis.
- CO5. **Compare** and analyze between survivorship curves of different types from the hypothetical/real data provided.

Catalogue Description

This course covers laboratory and on field hands on techniques and study of ecology and evolution. The very nature of ecology and evolution lab requires students to learn, calculate and analyze of real different types from the hypothetical / data provided for the community and also learn to construct phylogenetic tree and draw them. All the lectures will be devoted on discussions of basic theories and advanced topics, focusing on practical implementation of knowledge. Classes will be conducted by lecture as well as power point presentation, audio visual virtual lab session, on field excursion as per requirement. The tutorials will familiarize the students with practical problem-solving techniquesledby the course coordinator. Students will strongly grab the basic concepts of the subject via exercise and discussions with the coordinaton.

ELECTIVE ZOOLOGY LAB II

ECOLOGICAL PRINCIPLES, EVOLUTION AND BIODIVERSITY (PRACTICAL)

10 Lecture Hours

1. Study of life tables and plotting of survivorship curves of different types from htppothetical/real dataprovided.

10 Lecture Hours

2. Determination of population density in a natural/hypothetical community by quadratemethod and calculation of Shannon-Weiner diversity index for the same community.

10 Lecture Hours

3. Report on a visit to National Park/Biodiversity Park/Wild life sanctuary.

10 Lecture Hours

4. Study of fossils from models/pictures.

10 Lecture Hours

5. Study and verification of Hardy-Weinberg Law by chi squareanalysis.

10 Lecture Hours

6. Construction of phylogenetic trees and its interpretation.

Reference Books

- 1. Barnes, R.D. (1992). Invertebrate Zoology. Saunders College Pub.USA.
- 2. Campbell & Reece (2005). Biology, Pearson Education, (Singapore) Pvt.Ltd.
- 3.Kardong, K. V. (2002). Vertebrates Comparative Anatomy. Function and Evolution. Tata McGraw Hill Publishing Company. NewDelhi.
- 4. Ruppert, Fox and Barnes (2006) Invertebrate Zoology. A functional Evolutionary Approach 7th Edition, ThomsonBooks/Cole
- 5. Raven, P. H. and Johnson, G. B. (2004). Biology, 6th edition, Tata McGraw H Publications. NewDelhi

Modes of Evaluation: Quiz/Assignment/ presentation/ extempore/ Written Examination Examination Scheme:

Components	Mid Term	Attendance	Class Assessment	End Term		
Weightage (%)	20	10	30	40		

Relationship between the Course Outcomes (COs) and Program Outcomes (POs)

	Mapping between COs and Pos									
	Course Outcomes (COs)									
CO1	Identify and compare between fossil specimens and also learn how to construct phylogenetic tree and draw them.	PO1, PO2, PO3, PO6								
CO2	explain the importance of field trip and they will get more interestonthesubjectastheylearnhowtoworkinthefield trip effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinarysettings.	PO1, PO3, PO4								
CO3	demonstrate , calculate and analyse Shanon-Weiner diversity index for the same community.	PO1, PO3, PO5, PO9								
CO4	illustrate problems on Hardy-Weinberg Law by chi square analysis.	PO1, PO5, PO6, PO9								
C05	compare and analyze between survivorship curves of different types from the hypothetical/real data provided.	PO1, PO5, PO6, PO7								

Course Code	Course Title	Fundamental Knowledge	Critical Thinking	liixi PO3	Dd Technical Knowledge	50d Logical Thinking	Dopues Problem Identification Ability	A Analytical Knowledge	60d Career Goals	God Team Work	OdSustainable Development to01Environment	Development to Society.	Development to Humanity 710d
ZOL 12004	ELECTIVE ZOOLOGY LAB II (PRACTICAL)	3	1	3	1	3	3	1	-	2	-	-	-

1=weakly mapped

2= moderately mapped

3=strongly mapped

Model Question Paper

Name: Enrolment N	lo:						A] Put	DAMAS JNIVERSITY ISBUE EXCELLENCE				
Course: ZOI Program:B.S Semester:Ev Instructions: Attempt any t (carrying 10 r	Sc.Biochem en 2020-21 : two questio	nistry	7					ך א	fime: (Max. N) 03Hrs. 1arks:40 ion B is Compulsory		
	<u>IIarks).</u>		Sect	tion	A (At	tempt	any T	wo)				
1.	Section A (Attemptany Two) 1. Species Characters											
		1	2	3	4	5	6	7				
	A	+	-	-	+	-	-	+				
	В	+	+	+	-	-	-	+				
	С	+	+	+	-	-	-	+				
	D	+	-	-	+	+	-	-	4 4	CO1		
	Е	+	-	-	+	+	+	-	2			
	F	-	+	-	-	-	-	-				
	a) Draw th	1	U		l clado	gram ı	ising	the				
		data table. (An/Ap) I out which species is the outgroup for both ses.(U)										
2.	a) Estima have to ca in the ans b) Interpr	alcula wer s	ate 3 tim heet.(Ev	ies a 7)	nd wri	te the	avera			CO2		
3.	a) Identify b) What is specimen	s the				ficance	ofthe	2	4 4	C01		
4.	a) Constru following Netherlam b) Interpr population	; life ids.(C et w	table d Cr) hich ty	ata f	for <i>Zo</i> of sur	otocav	vivipen	rain the	7	CO5		

	Age interval	Number alive at the start of		
		the year		
	0	1000		
	1	763		
	2	308		
	3	158		
	4	57		
	5	10		
	6	7		
	7	2		
	8	0		
	SECTION B is comp	oulsory		
5.				CO1
				CO2
	Viva-voce (U/An/Ap/	/R/Ev)	10	CO3
				CO4
				CO5
6.	Practical copy (U/Ap		5	CO1
	Field trip diary (Ap/		5 5	CO2
			3	CO3

PSG13004	Applied Psychology	L	Т	Р	С			
	Contact Hours=60	5	1	0	6			
Pre-requisites/Exposure	10 + 2 knowledge of Biology							
Co-requisites	-							

Course Objectives:

- •To inform students about the basics of scientific research in appliedpsychology.
- •To make them learn the application of psychology in day to daylife.
- •To acquaint students with various applications of Psychologicalprincipals.

Course Outcomes:

CO1. **Discuss** the application of psychological principles in different areas of psychological research.

CO2. Explain the role of psychology in Organizations.

CO3. Illustrate the application of psychological principles in school and education.

CO4. **Determine** the role of psychology in regulating mental health.

CO5. **Define** the role of psychological principles in understanding socialinteractions.

CO6. Evaluate the stress level of students and job satisfaction of industryemployees.

Catalogue description:

UNIT-I: Introduction: Nature and fields of scientific research in applied psychology. Scientific discipline of applied psychology and challenges.

UNIT-II: Psychology in industries and organizations: Personnel selection; job analysis; fatigue and accidents; advertising and consumer behaviour.

UNIT-III: Psychology in education: School as an agent of socialization. Factors influencing school achievement. Exceptional children: Problems and remedial measures.

UNIT-IV: Psychology and mental health: Symptoms and causes of anxiety disorders and schizophrenia, mental retardation. Anti-social behaviour: Crime and delinquency.

UNIT-V:Psychologyandsocialbehaviour:Prejudiceandstereotypes;conflictanditsresolution. Applying Social Psychology and Social Problems: Intervention and Evaluation with emphasis on Environmental Problems and Poverty inIndia.

UNIT-VI: Practicum

- 1. Academic stress questionnaire. Determine the Subject's academic stressby administering Student Academic Stress Scale(SASS).
- 2. To assess the job satisfaction level of employees.

Readings:

- 1. An Introduction to Applied Cognitive Psychology. Psychology Press: NewYork. Sternberg, R. J. (Ed.)(2000).
- 2. Anastasi, A. (1979). Fields of applied psychology. New Delhi: McGrawHill.
- **3.** Applied Psychology: Perceiving Learning and Remembering. Australia:Cengage Learning.
- **4.** Durso, F. T. (2007). Handbook of Applied Psychology (2nd Ed). New West Sussex : Wiley & Sons. Esgate, A. et al.(2005).
- 5. Goldstein, A. P., & Krasner, B. (1987). Modern applied psychology. Elmford, New York: PergmonPress.
- 6. Handbook of intelligence. New York: Cambridge University Press. Sternberg, R. J. (2009).
- 7. McCormick, E. J., &Ilgen, D. (1980). Industrial psychology. Englewood Cliffs, N.J.: PrenticeHall.

Modes of Evaluation: Quiz/Assignment/ presentation/ extempore/ Written Examination Examination Scheme:

Components	Mid Term	Attendance	Class Assessment	End Term
Weightage (%)	20	10	30	40

	Course Outcomes (COs)	Mapped Program Outcomes
CO1	discuss the application of psychological principles in different areas of psychological research.	PO1, PO2, PO5
CO2	understand the role of psychology in Organizations.	PO1, PO2, PO4
CO3	summarize the application of psychological principles in school and education.	PO1, PO2, PO9
CO4	determine the role of psychology in regulating mental health.	PO1, PO2, PO4, PO5
CO5	define the role of psychological principles in understanding social interactions.	PO1, PO2, PO4
CO6	evaluate the stress level of students and job satisfaction of industry employees.	PO1, PO2, PO4, PO6, PO9, PO11

PSG13 004	Course Code	
Applied Psycholo gy	Course Title	
ω	РО 1	Fundamental Knowledge
ω	РО 2	Critical Thinking
ı	РО 3	Skill
ω	PO 4	Technical Knowledge
2	PO 5	Logical Thinking
-	6 6	Problem Identification Ability
ı	PO 7	Analytical Knowledge
ı	PO 8	Career Goals
	РО 9	Team Work
	\sim	Sustainable Development to Environment
1	PO1 1	Development to Society.
	PO1 2	Development to Humanity

1=weakly mapped 2= moderately mapped 3=strongly mapped

ADAMAS UNIVERSITY SCHOOL OF Liberal Arts & Culture studies END-SEMESTER EXAMINATION: DECEMBER 2020

Name of the Program:B.SC.BIOCHEMISTRY PAPER TITLE:AppliedPsychology 13004 MaximumMarks:40 Total No ofquestions:10 Semester:II PAPER CODE: PSG

Time duration: 3hours Total No of Pages:01

Instruction for the Candidate:

- 1. At top sheet, clearly mention Name, Univ. Roll No., Enrolment No., Paper Name & Code, Date ofExam.
- **2.** All parts of a Question should be answered consecutively. Each Answer should start from a freshpage.
- **3.** Assumptions made if any, should be stated clearly at the beginning of youranswer.

	Section A (Answer All the Questions) (5 $x = 5$)		
1.	What is Applied Psychology?	R	CO1	
2.	Define Job Analysis.	R	CO2	
3.	What is Mental Retardation?	R	CO3	
4.	Relate prejudice with social conflicts.	U	CO5	
5.	What is Hallucination?		CO4	
	SECTION B (Attempt any Three Questions) (3 x 5 = 15)		I	
6.	Describe the role of psychological principles in understanding social interactions.	U	CO5	
7.	Summarize the different factors influencing school achievement.	U	CO3	
8.	Discuss the role of psychological principlesin Personnel Selection.	Creating	CO2	
9.	Determine the strategies of conflict resolution in social interactions.	Evaluate	`CO5	
	SECTION C (Answer Any Two Questions) (2 x 10 = 20)			
10.	Determine the Subject's academic stress by administering Student Academic Stress Scale (SASS).	Evaluate	CO3/CO6	
11.	Assess the job satisfaction level of employees using a suitable scale.	Evaluate	CO2/CO6	
12.	Describe the clinical features and etiology of Schizophrenia.	U	CO4	

BIC 11010	METABOLISM OF CARBOHYDRATES AND LIPIDS (THEORY)	L	Τ	Р	С
Version 1.0	Contact Hours - 60	3	1	0	4
Pre-requisites/Exposure	BASIC KNOWLEDGE OF CARBOHYDRATE AND LIPID STRUCTURE				
Co-requisites	Biomolecules				

Course Objectives

- 1. To provide students the basic understanding of basic design ofmetabolism.
- 2. It will also provide in depth knowledge of different biochemical pathways farbohydrates and their regulations.
- 3. To elaborate lipid metabolic pathways and their regulations.
- 4. To understand general overview of starve feed cycle and glucosehomeostasis.

Course Outcomes

On completion of this course, the students will be able to

CO1. Explain basic design of metabolism.

CO2. **Summarise**and analyse different metabolic pathways leading to carbohydrate metabolism.

- CO3. Ilustrateand analyse different metabolic pathways leading to lipid metabolism.
- CO4. **Demonstrate** the role regulatory pathways.
- CO5. Interpretethe starve feed cycle and glucose homeostasis.

Catalogue Description

The core-course of metabolism of carbohydrate and lipid' will help to understand the basic design of metabolism. This course has been designed to gain a whole some knowledge on metabolic pathways related to carbohydrates and lipids. Biochemical reactions leading to anabolism and catabolism of carbohydrates and lipids are covered in the syllabus. Regulations of these pathways have also been included for discussion. Classes will be conducted by lecture as well as power point presentation, audio visual virtual lab session as per requirement. The tutorials will enable the students with problem-solving ability led by the course coordinator. Students will perceive the basic concepts of the subject via exercise and discussions with the coordinator.

Course Content METABOLISM OF CARBOHYDRATES AND LIPIDS

Unit 1: [6 lecture hours]

Basic design of metabolism: Autotrophs, heterotrophs, metabolic pathways, catabolism, anabolism, ATP as energy currency, reducing power of the cell.

Unit 2: [6 lecture hours]

Glycolysis: Glycolysis - a universal pathway, reactions of glycolysis, fermentation, fates of pyruvate, feeder pathways for glycolysis, galactosemia.

Unit 3: [6 lecture hours]

Gluconeogenesis and pentose phosphate pathway: Synthesis of glucose from non-carbohydrate sources, reciprocal regulation of glycolysis and gluconeogenesis, pentose phosphate pathway and its importance.

Unit 4: [6 lecture hours]

Glycogen metabolism: Glycogenesis and glycogenolysis, regulation of glycogen metabolism, glycogen storage diseases.

Unit 5: [6 lecture hours]

Citric acid cycle: Production of acetyl CoA, reactions of citric acid cycle, anaplerotic reactions, amphibolic role, regulation of citric acid cycle, glyoxalate pathway, coordinated regulation of glyoxalate and citric acid pathways.

Unit 6: [6 lecture hours]

Synthesis of carbohydrates: Calvin cycle, regulation of calvin cycle, regulated synthesis of starch and sucrose, photorespiration, C4 and CAM pathways, synthesis of cell wall polysaccharides, integration of carbohydrate metabolism in plant cell.

```
Unit 7: [6 lecture hours]
```

Fatty acid oxidation: Digestion, mobilisation and transport of cholesterol and triacyl glycerols, fattyacidtransporttomitochondria, β oxidationofsaturated,unsaturated,oddandevennumbered and branched chain fatty acids, regulation of fatty acid oxidation, peroxisomal oxidation, ω oxidation, ketone bodies metabolism,ketoacidosis.

Unit 8: [6 lecture hours]

Fatty acid synthesis: Fatty acid synthase complex. Synthesis of saturated, unsaturated, odd and even chain fatty acids and regulation.

Unit 9: [6 lecture hours]

Biosynthesis of eicosanoids, cholesterol, steroids and isoprenoids Synthesis of prostagladins, leukotrienes and thromboxanes. Synthesis of cholesterol, regulation of cholesterol synthesis. Synthesis of steroids and isoprenoids.

Unit 10: [4 lecture hours]

Biosynthesis of membrane lipids:Synthesis of membrane phospholipids in prokaryotes and eukaryotes, respiratory distress syndrome, biosynthesis of triacylglycerol, biosynthesis of plasmalogens, sphingolipids and glycolipids, lipid storage diseases.

Unit 11. [2 lecture hours]

Starve-feed cycle:Well-fed state, early fasting state, fasting state, early re-fed state, energy requirements, reserves and caloric homeostasis, five phases of glucose homeostasis.

Textbook:

1. Lehninger: Principles of Biochemistry (2013) 6thed., Nelson, D.L. and Cox, M.M., W.H.

Freeman and Company (New York), ISBN:13: 978-1-4641-0962-1 / ISBN:10:1-4292-3414-8.

Reference books:

 Harpers Illustrated Biochemistry 30thedition, Victor W Rodwell, Kathleen M. Botham, PeterJ. Kennelly, P. Anthony Weil, David A. BenderMcGraw-Hill Education – Europe, ISBN: 9780071825344, 0071825347.

2.Biochemistry (2012) 7thed., Berg, J.M., Tymoczko, J.L. and Stryer L., W.H. Freeman and Company (New York), ISBN:10:1-4292

Modes of Evaluation: Quiz/Assignment/ presentation/ extempore/ Written Examination Examination Scheme:

Components	Mid Term	Attendance	Class Assessment	End Term
Weightage (%)	20	10	30	40

	Mapping between COs and POs				
	Course Outcomes (COs)	Mapped Program Outcomes			
CO1	explain the basic design of metabolism	PO1, PO2, PO3			
CO2	summarise and analyse different metabolic pathways leading to carbohydrate metabolism.	PO1, PO2, PO3, PO5, PO7			
CO3	illustrate and analyse different metabolic pathways leading to lipid metabolism.	PO1, PO2, PO5			
CO4	demonstrate the role regulatory pathways.	PO2,PO3, PO5,PO6			
CO5	interpretethe starve feed cycle and glucose homeostasis.	PO1, PO2, PO5, PO6			

Relationship between the Course Outcomes (COs) and Program Outcomes (POs)

		Fundamental Knowledge	Critical Thinking	Skill	Technical Knowledge	Logical Thinking	Problem Identification Ability	Analytical Knowledge	Career Goals	Team Work	Sustainable Development to Environment	Development to Society.	Development to Humanity
Course Code	Course Title	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
BIC11010	METABOLISM OF CARBOHYDRATE S AND LIPID S (THEORY)	3	3	2	-	3	2	1	-	-	-	-	-

1=weakly mapped

2= moderately mapped

3=strongly mapped

Name:

Enrolment No:

Course: BIC 11010 - METABOLISM OF CARBOHYDRATES AND LIPIDS
(THEORY)Program:B.Sc. BiochemistryTime: 03Hrs.
Max. Marks:40

Instructions:

Attempt any **four** questions from **Section A** (each carrying 5 marks); any **two** questions from **Section B** (each carrying 10marks).

SEC	CTION A (Attemptany Four questions)		
1.	Explain coupled reaction with a suitable example. (U) What are anabolism and catabolism? (R)	2+3	CO1
2.	Compare between glycolysis and gluconeogenesis? How many ATPs generated by one turn of citric acid cycle. (R)	4+1	CO2
3.	Illustrate the role of HMG CoA reductase in the cholesterol metabolism. What is the role of drug lovastatin? (R)	3+2	CO3
4.	Enlist 3 important enzymes in the citric acid cycle pathway and their mode of regulation. (R)	3+2	CO3
5	Explain the role of cori cycle in the metabolic pathway? Why pentose PP pathway is also called hexose monophosphate shunt pathway? (U)	3+2	C01
	SECTION B (Attempt any Two questions)		
6.	Illustrate the role of carnitine in the beta oxidation pathway with a schematic diagram. How many turn and what amount of ATPs will be prepared by complete oxidation of a plmytoylcoA molecule. (R)	5+2+3	CO3
7.	What are good and bad cholesterol. Explain the role of cholesterol in atherosclerosis and bile salt formation. Compare energy production between glucose and fatty acid. (R)	2+4+2+2	CO1 CO2
8.	Describe the glycogen degradation pathway. Illustrate the regulation of glycogen synthesis and breakdown in details. Briefly describe the formation of triacylglycerol. (U)	2+5+3	CO1 CO2
9	Outline the main features of starve feed cycle by mentioning the role of different hormones. Assess the coordination between glyoxalate cycle and citric acid cycle.	2+3+3+2	CO4 CO3

BIC12011	METABOLISM OF CARBOHYDRATES AND LIPIDS LAB (PRACTICAL)	L	T	Р	C
Version 1.0	Contact Hours - 45	0	0	3	2
Pre-requisites/Exposure	BASIC KNOWLEDGE OF CARBOHYDRATE AND LIPID BIOCHEMISTRY				
Co-requisites	Theory of Metabolism of Carbohydrate and Lipid.				

Course Objectives

- 1. To provide students with hands-on training in the qualitative and quantitative aspects related to carbohydrate and lipidmetabolism.
- 2. Students will need to become proficient with different assays and applications.

Course Outcomes

On completion of this course, the students will be able to

- CO1. Explain the basic theories of carbohydrate and lipidestimation.
- CO2. Illustrate basic principles of fermentation and it'sapplication in industry.
- CO3. Comprehend the assay of salivaryamylase.
- CO4. **Demonstrate** modern tools like spectrophotometers, colorimeters, micropipettesetc.
- CO5. **Develope**the knowledge of assay protocols and techniques in biological samples from everydaylife.

Catalogue Description

The core course "metabolism of carbohydrate and lipid lab" is a practical paper which has been designed to provide theknowledgeof qualitative and quantitative aspects related to carbohydrate and lipid metabolism. It deals with all the basic principles related to carbohydrate andlipidestimation. Students will be able to understand the basic concepts of spectrophotometers and others techniques and will practice hands-on all of them. They will also learn to compare and use these methods for practical purpose. All the lectures will be devoted on discussions of basic theories and advanced topics, focusing on practical implementation of knowledge. Classes will be conducted by lecture as well as power point presentation, audiovisual virtual lab session as per requirement. The tutorials will familiarize the students with practical problem-solving techniquesled by the course coordinator. Students will strongly grab the basic concepts of the subject via exercise and discussions with the coordinator.

Course Content

METABOLISM OF CARBOHYDRATES AND LIPIDS LAB

- 1. Estimation of Blood glucose by glucometer. (5 Hours)
- 2. Determination of glucose by Benedict's solution.(10 Hours)
- 3. Determination of glucose by Fehling's method.(5 Hours)
- 4. Isolation of starch from potato.(5 Hours)
- 5. Determination of Lipase activity, salivary amylase activity. (5 Hours)
- 6. Study of Fermentation. (5 Hours)
- 7. Estimation of Sucrose using Benedict's solution.(10 Hours)
- 8. Estimation of acid number of oil.(5 Hours)

SUGGESTED READINGS

1.Lehninger: Principles of Biochemistry (2013) 6thed., Nelson, D.L. and Cox, M.M., W.H. Freeman and Company (New York), ISBN:13:978-1-4641-0962-1 /ISBN:10:1-4641-0962-1.

2. Textbook of Biochemistry with Clinical Correlations (2011) 7thed., Devlin, T.M., John Wiley & Sons, Inc. (New Jersey), ISBN:978-0-470-28173-4.

3.Biochemistry (2012) 7thed., Berg, J.M., Tymoczko, J.L. and Stryer L., W.H. Freeman and Company (New York), ISBN:10:1-4292-2936-5,ISBN:13:978-1-4292-2936-4.

Modes of Evaluation: Quiz/Assignment/ presentation/ extempore/ Written Examination Examination Scheme:

Components	Mid Term	Attendance	Class Assessment	End Term
Weightage (%)	20	10	30	40

	Mapping between COs and Pos					
	Course Outcomes (COs)					
CO1	explain the basic theories of carbohydrate and lipid estimation.	PO1, PO2, PO3				
CO2	illustrate basic principles of fermentation and it's application in industry.	PO1, PO10, PO11				
CO3	comprehend the assay of salivary amylase.	PO1, PO2, PO3, PO4, PO9				
CO4	demonstrate their concept modern tools like spectrophotometers, colorimeters, micropipettesetc.	PO1, PO3, PO6				
CO5	develop the knowledge of assay protocols and techniques in biological samples from everyday life.	PO1, PO2, PO4				

BIC12011	Course Code	
METABOLISM OF CARBOHYDRATE S AND LIPIDS LAB (PRACTICAL)	Course Title	
ω	PO1	Fundamental Knowledge
2	PO2	Critical Thinking
3	PO3	Skill
2	PO4	Technical Knowledge
1	PO5	Logical Thinking
1	PO6	Problem Identification Ability
ı	PO7	Analytical Knowledge
-	PO8	Career Goals
-	PO9	Team Work
-	PO10	Sustainable Development to Environment
-	PO11	Development to Society.
	PO12	Development to Humanity

1=weakly mapped 2= moderately mapped 3=strongly mapped

Model Question Paper

Name:

Enrolment No:

Course: BIC12011 – METABOLISM OF CARBOHYDRATES AND LIPIDS LAB (PRACTICAL)

Program:B.Sc.Biochemistry Semester:Odd 2019-20

Time: 03Hrs. Max. Marks:40

Instructions:

Attempt any **two** questions from **Section A** (each carrying 10 marks); **Section B** is Compulsory (carrying 10 marks).

	Section A (Attemptany Two)						
1.	a) Write the principle of fermentation. b) Determine the presenceofamylaseinhumansaliva with a simple experiment.(R)	4 6	CO1 CO2				
2.	a) Explain the basic theory G OD- POD method.(R) b) Determine the glucose levelof the given serum with the GOD- POD method. (Ap)	4 6	CO3 CO4				
3.	a) Write the principle behind ion- exchange chromatography.(R) b) Explain the CO2 production ifermentation with a simple experiment. (An)	4 6	CO3 CO2				
	SECTION B is compulsory						
4.	Viva-voce (U/An/Ap/R/Ev)	10	CO1 CO2 CO3 CO4 CO5				
5.	Practical copy(U/Ap/Ev)	10	CO1 CO2 CO3				

BIC11014	Metabolism of amino acids and Nucleotides (THEORY)	L	Τ	Р	С
Version 1.0	Contact Hours – 60	3	1	0	4
Pre-requisites/Exposure	Basic knowledge of Biomolecules and Enzymology of B.Sc.				

	Level
Co-requisites	

Course Objectives:

- **1.** The main focus of the course is to cover the metabolic pathways regulating amino acid catabolism and anabolism.
- **2.** It will provide a basic understanding about the biosynthesis and degradation of purines andpyramidine.
- **3.** The course will finally give an insight about the interconnections between carbohydrates, proteins, lipids and nucleic acid metabolicpathways.

Course outcome:

The students will be able to

CO1. Explain various biochemical changes that obey the basic thermodynamic principles of anabolism and catabolism.

CO2. Comprehend how the living organisms exchange energy and matter with the surroundings for their survival, and store free energy in the form of energy-rich compounds. **CO3.** Identify how the catabolic breakdown of the biomolecules is associated with release

offreeenergy;whereas,freeenergyisutilizedduringsynthesisofbiomolecules i.e.,anabolic pathways.

CO4.Assess the crucial role of some hormones with regard to the integration of metabolic pathways.

CO5. Utilize the knowledge of metabolic pathways to biotechnological and biochemical research.

Catalogoue Description:

The course is going to providean understanding about the concept of anabolism and catabolism of amino acids and nucleotides and their role as high energy compounds in the cell. They will acquire knowledge related to regulation of various pathways. The course will teach about the importance of biosynthesis and degradation of amino acids and their regulation. The importance of high energy compounds, synthesis of ATP under aerobic and anaerobic conditions will be understood. The role of Urea cycle and its regulation in catabolism of amino acids and related in- born errors of amino acid metabolism as storage molecules will be taught. Furthur students will acquire the knowledge for biosynthesis and degradation of purines and pyrimidines. The course will teach about the regulatory pathways of purine and pyrimidine biosynthesis along with biosynthesis of ribonucleotides, deoxyribonucleotides and polynucleotides. Finally, the student will gain insights into metabolic engineering for the production of usefulbiomolecules.

Course Content

METABOLISM OF AMINO ACIDS AND NUCLEOTIDES (THEORY)

UnitI

LectureHours

Overview of amino acid metabolism: Nitrogen cycle, incorporation of ammonia into biomolecules. Metabolic fates of amino groups. Digestion and absorption of dietary proteins. Protein calorie malnutrition - Kwashiorkar and Marasmus. Nitrogen balance, transamination, role of pyridoxal phosphate, glucose-alanine cycle, Kreb's bicycle, urea cycle and inherited defects of urea cycle.

UnitII

LectureHours

Catabolism of amino acids:Catabolic pathways of individual amino acids. Glucogenic and ketogenic amino acids. Metabolism of one carbon units. Disorders of amino acids metabolism, phenylketonuria, alkaptonuria, maple syrup urine disease, methylmalonic acidemia (MMA), homocystinuria and Hartnup's disease.

UnitIII

LectureHours

Biosynthesis of amino acids: Overview of amino acid synthesis. Biosynthesis of non-essential amino acids and its regulation.

Unit IV 10 LectureHours

Precursor functions of amino acids: Biosynthesis of creatine and creatinine, polyamines (putresine, spermine, spermidine), catecholamines (dopamine, epinephrine, norepinephrine) and neurotransmitters (serotonin, GABA). Porphyrin biosynthesis, catabolism and disorders of porphyrin metabolism

Unit V 5 Lecture Hours

Biosynthesis of purine and pyrimidine nucleotides: *De novo* synthesis of purine and pyrimidine nucleotides, regulation and salvage pathways.

Unit VI 5 Lecture Hours

Deoxyribonucleotides and synthesis of nucleotide triphosphate: Biosynthesis of deoxyribonucleotides and its regulation, conversion to triphosphates, biosynthesis of coenzyme nucleotides.

Unit VII 10 Lecture Hours

Degradation of purine and pyrimidine nucleotides: Digestion of nucleic acids, degradation of purine and pyrimidine nucleotides. Inhibitors of nucleotide metabolism. Disorders of purine and pyrimidine metabolism–Lesch-Nyhansyndrome,Gout,SCID,adenosinedeaminasedeficiency.

Unit VIII 5 Lecture Hours

.

10

10

5

Integration of metabolism: Integration of metabolic pathways (carbohydrate, lipid and amino acid metabolic pathways), tissue specific metabolism (brain, muscle, and liver).

Suggested Readings

- 1.Lehninger: Principles of Biochemistry (2013) 6th ed., Nelson, D.L. and Cox, M.M., WHFreeman and Company (New York), ISBN: 13:978-1-4641-0962-1 / ISBN:10:1-4641-0962-1.
- 2. Molecular Cell Biology (2013) 7th ed., Lodish, H., Berk, A., Kaiser, C.A., Krieger, MBretscher, A., Ploegh, H., Amon, A. and Scott, M.P., W.H. Freeman & Company (New York), ISBN:13:978-1-4641-0981-2.
- 3.Biochemistry (2010) 4th ed., Garret, R. H. and Grisham, C.M., Cengage Learning (Boston), ISBN-13:978-0-495-11464-2.
- 4. Principles of Biochemistry (2008) 3rd ed., Voet, D.J., Voet, J.G. and Pratt, C.W., JunWiley & Sons, Inc. (New York), ISBN:13:978-0470-23396-2

Modes of Examination:

Assignment/Quiz/Project/Presentation/Written Exam Examination

Scheme:

Components	Internal	Attendance	Mid Term	End Term
Weightage (%)	30	10	20	40

	Mapping between COs and POs								
	Course Outcomes (COs)	Mapped Program Outcomes							
CO-1	understand various biochemical changes that obey the basic thermodynamic principles of anabolism and catabolism.	PO1, PO2							
CO-2	comprehend how the living organisms exchange energy and matter with the surroundings for their survival, andstore free energy in the form of energy-rich compounds.	PO1, PO2, PO5							
СО-3	identify how the catabolic breakdown of the biomolecules is associated with release of free energy; whereas, free energy is utilized during synthesis of biomolecules i.e., anabolic pathways.	PO3, PO4,PO2							
CO-4	assess the crucial role of some hormones with regard to the integration of metabolic pathways.	PO2, PO4, PO6							
CO-5	utilize the knowledge of metabolic pathways to biotechnological and biochemical research.	PO3, PO5, PO7, PO8, PO10							

Course Code		Od Fundamental Knowledge	Od Critical Thinking	Od Skill	Od Technical Knowledge	G Logical Thinking	Dependent Identification Ability	Od Analytical Knowledge	Od Career Goals	Od Team Work	Sustainable Development to	ODevelopment to Society.	ප් Development to Humanity
	Course Title	PO 1	2 2	РО 3	4	5	6	PO 7	PO 8	9 9	10	11	PO 12
BIC 11014	Metabolism of amino acids and Nucleotides (THEORY)	2	3	2	2	2	1	1	1	-	1	-	-

Nan Enr	ne: olment No:	ADAMA UNIVERSITY PURSUE EXCELLENC	S
Pro	rse: BIC11014 - Metabolism of amino acids and Nucleotide gram: B.Sc.Biochemistry lester:Odd 2019-20	es(THEOR Fime: 03H Max. Mai	rs.
Atte Sect	ructions: mpt any four questions from Section A (each carrying 5 mark ion B (each carrying 10 marks). CTION A (Attemptany Four questions)	s); any two	questions from
1.	Discuss amine group donors in purine biosynthesis pathway og Inosine Monophosphate (IMP). (Cr)	5	CO1
2.	Explain the importance of hepatocyte cells for amino acid metabolism and Urea cycle(Un)	5	CO2
3.	What is the role of isozymes in regulation of biosynthesispathway? Explain with an example.(Re/Un)	5	CO2 CO3
4.	What is the difference between de novo biosynthesis and salvage pathway in metabolism? Explain with an example	3+2	CO4

BIC12015	METABOLISM OF AMINO ACIDS AND NUCLEOTIDES LAB (PRACTICAL)	L	T	P	C		
Version 1.0	Contact Hours - 45	0	0	3	2		
Pre-requisites/Exposure	BASIC KNOWLEDGE OF BIOCHEMISTRY						
Co-requisites	Theory of Metabolism of Amino acid and Nucletides.						

Course Objectives

- 1. To provide students with hands-on training in the qualitative and quantitative aspects **a**mino acids and nucleotidesmetabolism.
- 2. Students will need to become proficient with different assays and applications.

Course Outcomes

On completion of this course, the students will be able to

- CO1. Explain the basic theories of amino acids and nucleotidesmetabolism.
- CO2. Illustrate basic principles and applications of SGPT-SGOTassay.
- CO3. Comprehend the assay of urea and creatinine in blood serum.
- CO4. Demonstrate modern tools like spectrophotometers, colorimeters, semi-autoanalysersetc
- CO5. **Develop** the knowledge of assay protocols and techniques in clinical cases fromeveryday life.

Catalogue Description

Thecorecourse"metabolismofaminoacidandnucleotidelab"isapracticalpaperwhichhasbeen designedtoprovidetheknowledgeofqualitativeandquantitativeaspectsrelatedtoaminoacidand nucleotide metabolism. It deals with all the basic principles related to the estimation of different parameters of blood like SGOT-PT,urea,creatinine etc. Students will be able to understand the basicconceptsofspectrophotometersandotherstechniquesandwillpracticehands-onallofthem. They will also learn to compare and use these methods for practical purpose. Allthe lectures will be devoted on discussions of basic theories and advanced topics, focusing on practical implementation of knowledge. Classes will be conducted by lecture as well as power point presentation, audio visual virtual lab session as per requirement. The tutorials will familiarize the students with practical problem-solving techniquesled by the course coordinator. Students will strongly grab the basic concepts of the subject via exercise anddiscussions with thecoordinator.

Course Content METABOLISM OF AMINO ACID AND NUCLEOTIDE LAB

- 1. Estimation of SGPT & SGOT. (10 Hours)
- 2. Estimation of Urea. (10 Hours)
- 3. Estimation of Bilirubin & Biliverdin. (10 Hours)

- 4. Estimation of Creatinine. (5 Hours)
- 5. Estimation of Total protein & serum albumin.(10 Hours)
- 6. Estimation of ALP.(5 Hours)
- 7. Estimation of Creatine Kinase (CK).(5 Hours)
- 8. Estimation of Amylase.(5 Hours)

SUGGESTED READINGS

1.Lehninger: Principles of Biochemistry (2013) 6thed., Nelson, D.L. and Cox, M.M., W.H. Freeman and Company (New York), ISBN:13:978-1-4641-0962-1 /ISBN:10:1-4641-0962-1.

2. Textbook of Biochemistry with Clinical Correlations (2011) 7thed., Devlin, T.M., John Wiley & Sons, Inc. (New Jersey), ISBN:978-0-470-28173-4.

3.Biochemistry (2012) 7thed., Berg, J.M., Tymoczko, J.L. and Stryer L., W.H. Freeman and Company (New York), ISBN:10:1-4292-2936-5,ISBN:13:978-1-4292-2936-4.

Modes of Evaluation: Quiz/Assignment/ presentation/ extempore/ Written Examination Examination Scheme:

Components	Components Mid Term Atter		Class Assessment	End Term
Weightage (%)	20	10	30	40

	Mapping between COs and Pos								
	Course Outcomes (COs)	Mapped Program Outcomes							
CO1	explain the basic theories of amino acids and nucleotides metabolism.	PO1, PO2, PO3							
CO2	illustrate basic principles and applications of SGPT-SGOT assay.	PO1, PO3, PO11							
CO3	comprehend the assay of urea and creatinine in blood serum.	PO1, PO2, PO3, PO4, PO8							
CO4	demonstrate their concept modern tools like spectrophotometers, colorimeters, semi-autoanalysersetc.	PO1, PO3. PO6, PO10							
CO5	develop the knowledge of assay protocols and techniques in clinical cases from everyday life	PO1, PO4, PO9, PO11							

BIC12015	Course Code	
METABOLISM OF AMINO ACID AND NUCLEOTIDE LAB (PRACTICAL)	Course Title	
ω	PO1	Fundamental Knowledge
2	PO2	Critical Thinking
ω	PO3	Skill
Ν	PO4	Technical Knowledge
ı	PO5	Logical Thinking
-	PO6	Problem Identification Ability
ı	PO7	Analytical Knowledge
-	PO8	Career Goals
-	PO9	Team Work
-	PO10	Sustainable Development to Environment
<u> </u>	PO11	Development to Society.
,	PO12	Development to Humanity

1=weakly mapped 2= moderately mapped 3=strongly mapped

Model Question Paper

Name:

Enrolment No:

Course: BIC12015 – METABOLISM OF AMINO ACIDAND NUCLEOTIDE LAB (PRACTICAL)

Program: B.Sc. BiochemistryTime: 03 Hrs. Semester:Odd 2019-20

Max. Marks:40

Instructions:

Attempt any **two** questions from **Section A** (each carrying 10 marks); **Section B** is Compulsory (carrying 10 marks).

	Section A (Attempt any Two)									
1.	a) Write the principle of urea estimation. (U) b) Estimate the content of uric acid in the given sample.(Ap)	4 6	CO1, CO2							
2.	 a) Explain the basic theory \$GOTmethod.(U) b) Determine the SGPT levelof provided sample. (Ap) 	4 6	CO3, CO4							
3.	a) Write the principle behind creatinine estimation.(U)b) Estimate the content of creatinine in the givensample.(Ap)	4 6	CO3, CO2							
	SECTION B is compulsory									
4.	Viva-voce (U/An/Ap/R/Ev)	10	CO1, CO2, CO3, CO4, CO5							
5.	Practical copy (U/Ap/Ev)	10	CO1, CO2, CO3							

BIC11	016	TOOLS AND TECHNIQUES BIOCHEMISTRY	S IN	L	T	P	C	
Versi	ion 1.0	Contact Ho	urs: 30	2	0	0	2	
Pre-r	requisites/Exposure	Basic concepts of Biochemistry at B.S.	c Level		<u> </u>			
Co-r	equisites							
	of nucleic acid metal	polism? .(Re/Un)						
5	metabolism?(Re)	carbamoylase deficiency affects our	5		(C O :	5	
	SECTION B (Attem	npt any Two questions)						
6.	 (a) Discuss atleast two carbohydrate and am (b) Discuss atlease interconnecting carbon metabolism. (Re) 	5+5			CO1 CO2			
7.	What is the role of C I) and CPS-II in regu metabolic pathways?	10			CO1 CO2			
8.	Which important me deaminase (ADA) ar combined immunode	5+5			CO3 CO4			
9		reductase regulates the formation of two enzymes regulates the activity of ctase and how? (Re)	5+5			CO	5	

Course Objectives

The objective of this course is to introduce students to understand basics and conduct experiments in biochemistry. The course is designed to teach utility of experimental methods in biochemistry in a problem orientedmanner. The basic laboratory safety would help the students to understand possible hazards during experiments.

Course Outcomes

CO1. develop concepts of biochemistry with easy to runexperiments.

On completion of this course, the students will be able to

CO1. develop concepts of biochemistry with easy to runexperiments.

CO2. **experiment** with basic laboratory instruments and understand principle of measurements using those instruments with experiments in biochemistry.

CO3. assess various stock solutions and working solutions that will beneeded for the course.

CO4. utilize spectrophotometer and conduct experiments.

CO5. develop knowledge about basic laboratory safety.

Catalog Description

Students will use current biochemical techniques to plan and carry out experiments. They will learn basic laboratory safety before carry out an experiment. They will generate and test hypotheses, analyzed at a using biochemical methods and appreciate the limitation sof conclusions drawn from experimental data. Trouble-shooting will be stressed in classes and labs.

Course Content SEC I: TOOLS AND TECHNIQUES IN BIOCHEMISTRY

Biochemical reagents and solutions: Safety practices in the laboratory. Preparation and storage of solutions. Concepts of solution concentration and storing solutions. Quantitative transfer of liquids. Concept of a buffer, Henderson-Hasselbach equation, working of a pH meter. [20 hrs]

Exercise: Preparation of a buffer of given pH and molarity. [5 hrs]

Spectrophotometric techniques:Principle and instrumentation of UV-visible and fluorescence spectroscopy. [15 hrs]

Exercises [20hrs]

i.Determination of the absorption maxima and molar extinction coefficient (of a relevant organic molecule).

ii. Measurement of fluorescencespectrum.

iii. Determination of concentration of a protein solution by Lowry/BCA

method.Introduction and importance of virtual labs inbiochemistry

Reference Books

- 1.Physical Biochemistry: Principles and Applications (2010) 2nd ed., Sheehan, D., Wiley Blackwell (West Sussex), ISBN:978-0-470-85602-4 /ISBN:978-0-470-85603-1.
- 2.Physical Biochemistry: Applications to Biochemistry and Molecular Biology (1982) 2nd ed, Freifelder, D., W.H. Freeman and Company (New York), ISBN:0-7167-1315-2 / ISBN:0-7167-1444-2.
- 3.An Introduction to Practical Biochemistry (1998) 3rd ed., Plummer D. T., Tata McGraw H Education Pvt. Ltd. (New Delhi), ISBN:13: 978-0-07-099487-4 / ISBN:10:0-07-099487-0.

Modes of Evaluation: Quiz/Assignment/ presentation/ extempore/ Written Examination Examination Scheme:

Components	Mid Term	Attendance	Class Assessment	End Term
Weightage (%)	20	10	30	40

	Mapping between COs and POs								
	Course Outcomes (COs)								
CO1	Develop concepts of biochemistry with easy to runexperiments.	PO1, PO4, PO5, PO7							
CO2	Experiment with with basic laboratory instruments and understand principle of measurements using those instruments with experiments in biochemistry.	PO1, PO2, PO3, PO4, PO10							
CO3	Assess various stock solutions and working solutions that will beneeded for the course.	PO3, PO4, PO5, PO6, PO7							
CO4	Utilize spectrophotometer and conduct experiments.	PO1,PO3, PO4, PO6, PO7,PO9							
CO5	Develop knowledge about basic laboratory safety.	PO3, PO4, PO5, PO6							

		Fundamental Knowledge	Critical Thinking	Skill	Technical Knowledge	Logical Thinking	Problem Identification Ability	Analytical Knowledge	Career Goals	Team Work	Sustainable Development to Environment	Development to Society	Development to Humanity
Course Code	Course Title	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
BIC11016	SEC I: TOOLS AND TECHNIQUES IN BIOCHEMISTRY	3	1	3	3	3	3	3	-	1	1	-	-

1=weakly mapped 2= moderately mapped 3=strongly mapped

Model Question Paper

Nan	ne:	XDOLO	
Enr	olment No:	ADAMAS UNIVERSITY PURSUE EXCELLENCE	
Cou		BIOCHEMI	STRY
	EORY)	.	
		Гіте: 03Hrs. Max. Marks:	40
Sem			40
Inst	ructions:		
Atte	mpt any three questions from Section A (each carrying 4 mark	s); any four q	uestions
from	Section B (each carrying 7 marks).		
SEC	CTION A (Attemptany Three questions)		
1.	Explain different aspects of basic safety in a laboratory.(Un)	4	CO5
2.	Explain how water can behave both as an acid and base. .(Un)	4	CO2
3.	Explain how would you prepare 500 mL of a 1 M solution of NaCl from a 2 M stock of NaCl?(Ev)	4	CO3
4.	Determine hydrogen ion concentration of a solution with a $pH = 5.5$?(Ev)	4	CO3
	SECTION B (Attempt any Four questions)		
5.	How to handle cryogenics in the laboratory? How laboratory waste materials should be discarded?(Re)	3+4	CO2 CO5
6.	Illustrate working principle of a spectrophotometer.(Un)	7	CO4
7.	Explain the concept of acid and its conjugate base using	7	CO1

Classify different types of salts. Give two examples for each

Explain how blood buffer system works. Explain how to

3+4

4+3

CO1

CO3

suitable examples.(Un)

reduce acidity in human. .(Ún)

category.(Un)

8.

9.

BIC11012	Cell Biology	L	Т	Р	C
Version 1.0	Contact Hours: 60	3	1	0	4
Pre-requisites/Exposure	Class 12 level Biology knowledge				
Co-requisites	Basic Biology Knowledge of B.Sc 1 st Year				

Course Objectives

- 1. To recall and extend the basic idea about the structure and function of eds2.
- To learn about different physiological characteristics ofcells.
- 3. To think about the applications of microscopy as tools for understanding a morphology.
- 4. To learn about cellular reproduction its relation to the key oflife.
- 5. To utilize the knowledge of cell biology to search the causes of humandisease.

Course Outcomes

On completion of this course, the students will be able to

CO1: develop the basic idea of structure and function of prokaryotic and eukaryotic cells

CO2: **discuss** detailed perspective of cell including physiological properties, cell composition, growth, metabolic processes, signalling pathways, life cycle.

CO3: interpret the applications of different microscopy as tools for understanding cell biology.

CO4: explain about cell cycles, cell division and apoptosis.

CO5: **assess** the cell biology in microscopic and molecular level to understand of human health and disease.

Catalog Description

This course deals with the biology of cells of higher organisms: The structure, function, and biosynthesis of cellular membranes and organelles; cell growth and oncogenic transformation; transport, receptors, and cell signaling; the cytoskeleton, the extracellular matrix, and cell movements; chromatin structure and RNA synthesis.

Course Content

1. Unit I Introduction tocellbiology [5 LectureHours]

Prokaryotic (archaea and eubacteria) and eukaryotic cell (animal and plant cells), cells as experimental models.

2. Unit II Tools of cell biology [8 LectureHours]

Light microscopy, phase contrast microscopy, fluorescence microscopy, confocal microscopy, electron microscopy, FACS. Centrifugation for subcellular fractionation.

3. Unit III Structure of different cell organelles [7 LectureHours]

Structure of nuclear envelope, nuclear pore complex. ER structure. Organization of Golgi,Lysosome.Structure and functions of mitochondria, chloroplasts and peroxisomes.Zellweger syndrome.

4. Unit IV Protein trafficking [20 LectureHours]

Selective transport of proteins to and from the nucleus. Regulation of nuclear protein import and export.TargetingproteinstoER,smoothERandlipidsynthesis.Exportofproteinsandlipidsfrom ER and into ER. Lipid and polysaccharide metabolism in Golgi. Protein sorting and export from Golgi. Mechanism of vesicular transport, cargo selection, coat proteins and vesicle budding, vesicle fusion. Protein import and mitochondrial assembly, protein export from mitochondrial matrix. Import and sorting of chloroplastproteins.

5. Unit V Cytoskeletal proteins [10 LectureHours]

Structure and organization of actin filaments. Treadmilling and role of ATP in microfilament polymerization, organization of actin filaments. Non-muscle myosin. Intermediate filament proteins, assembly and intracellular organization. Assembly, organization and movement of cilia and flagella.

6. Unit VI Cell wall and extra cellular matrix [5 Lecture Hours]

Prokaryotic and eukaryotic cell wall, cell matrix proteins. Cell-matrix interactions and cell-cell interactions. Adherence junctions, tight junctions, gap junctions, desmosomes, hemidesmosomes, focal adhesions and plasmodesmata.

7. Unit VII Cell cycle, cell death andcellrenewal [5 LectureHours]

Eukaryotic cell cycle, restriction point, and checkpoints. Cell division. Apoptosis and necrosis - brief outline. Salient features of a transformed cell.

- 1. The Cell: A Molecular Approach (2009) 5th ed., Cooper, G.M. and Hausman, R.E., ASM Press & Sunderland (Washington DC), Sinauer Associates, MA, ISBN:978-0-87893-300-6.
- 2. Molecular Cell Biology (2012) 7th ed., Lodish, H., Berk, A., Zipursky, S.L., Matsudaira, P., Baltimore, D. and Darnell. J., W.H. Freeman & Company (New York), ISBN:13:978-1-4641-0981-2 / ISBN:10:1-4641-0981-8.

Modes of Evaluation: Quiz/Assignment/ presentation/ extempore/ Written Examination Examination Scheme:

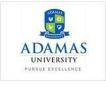
Components	Mid Term	Attendance	Class Assessment	End Term
Weightage (%)	20	10	30	40

	Mapping between COs and Pos							
	Course Outcomes (COs)	Mapped Program Outcomes						
CO1	Develop the basic idea of structure and function of prokaryotic and eukaryotic cells	PO1, PO3,PO6						
CO2	Discuss detailed perspective of cell including physiological properties, cell composition, growth, metabolic processes, signalling pathways, life cycle.	PO1,PO2, PO3, PO4.PO5						
CO3	Interpret the applications of different microscopy as tools for understanding cell biology.	PO1,PO2, PO3, PO4, PO5,PO7						
CO4	Explain about cell cycles, cell division and apoptosis	PO1, PO5, PO7						
CO5	Assess the cell biology in microscopic and molecular level to understand of human health and disease	PO8,PO10, PO11						

Fundamental Knowledge
Critical Thinking
Skill
Technical Knowledge
Logical Thinking Ability
Problem Identification
Analytical Knowledge
Career Goals
Team Work
Sustainable Development to Environment
Development to Society
. Development to Humanity

Course Code	Course Title	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
BIC11012	Cell Biology	3	2	3	2	2	1	2	1	-	1	1	-

1=weakly mapped


2= moderately mapped

3=strongly mapped

Model Question Paper

Name:	
-------	--

Enrolment No:

Course: BIC11012 – Cell Biology

Program: B.SCBiochemistry Semester:Odd2019-20 Time: 03Hrs. Max. Marks:40

Instructions:

Attempt any three questions from **Section A** (each carrying 4 marks); any **four Questions** from **Section B** (each carrying 7 marks).

	Section A (Attem	pt any Three)	
1.	Pinocytosis refers to the uptake of membrane and solutes by the cell in small vesicles. True/False? Justify. (Ev)	4	CO1
2.	A "signal patch" is the receptor to which a "signal peptide" binds. True/False? Justify. (Ev)	4	CO2
3.	What is apoptosis? (Re)	4	CO5
4.	Show that lipid molecules can move through the membranes? (Ap)	4	CO3
	SECTION B (Attempt any fourQuestions)		
5.	 a) Compare and contrast the 'vesicular transport' and 'cisternal maturation' models of golgifunction. b) Why SNARES are necessary for the processof "cotranslational transport"? (Ap/Re) 	4+3	CO2
6.	a) Where Glycosylation is a form of protein covalent modifications that occurs in cell? Describe the process briefly (U)	1+3+3	

	b) Signal peptides are permanent structural components of a protein how can you useit forprotein purification?(Ap)	CO4 CO2 CO3	
7.	 a) Why sulfation required for cell? b) What do you knw aboutmembrane 	2+3+2	CO2

	liquidity? c) What is the structural role of ER in cell (Re)		
8.	 a) Explain the connection between single membrane bound organelles incell? b) Distinguish between primary andsecondary lysosome.(Un/An) 	5+2	CO5
9.	 a) What are the hall maksof cancer? b) How can you prove velocity gradient centrifugation isinferior to densitygradient centrifugation. (Re) 	3+4	CO2

BIC12013	Cell Biology Lab	L	Т	Р	C
Version 1.0	Contact Hours:45	0	0	3	2
Pre-requisites/Exposure	Knowledge of Cell Biology Theory Paper				

Course Objectives

- 1. To study the cells from animals andplants.
- 2. To determine micrographs of different cell components.
- 3. To discuss the interactions between cellular components.
- 4. To apply the knowledge of cell biology to select examples of changes or losses in cell function and compare and contrast the events of cell cycle and its regulation.

Course Outcomes

On completion of this course, the students will be able to

CO1: Examine animal and plant cells.

CO2: Demonstrate micrographs of different cell components.

CO3: **Illustrate** the interactions of the cells and how cellular components are used to generate and utilize energy in cells.

CO4: **Apply** their knowledge of cell biology to select examples of changes or losses in cell function and compare and contrast the events of cell cycle and its regulation.

CO5: Appraise the laws of heredity with practical emphasis on inheritance.

Catalog Description

Course provides hand-on training in current cell biological methods. A discovery-based component of this course focuses on application of the mentioned methods to study changes in protein expression and cytoskeleton organization in cells exposed to microenvironmental stress stimuli.

Course Content

- 1. Microscope Handling (5 Hours)
- 2. Plsmolysis and DePlsmolysis of Plant cell (5 Hours)
- 3. Plsmolysis and DePlsmolysis of animal cell (5 Hours)
- 4. Obsevation and Identification of water Eukaryotes in Microscope (10 Hours)
- 5. Cell counting through Haemocytometer (5 Hours)
- 6. LeishMann staining to identify and count different WBCs (10 Hours)
 - 7. Giemsa staining to identify and count different WBCs (5 Hours)

- 8. Identification of electron micograph pictures (5 Hours)
- 9. Cell fractionation using velocity gradient centrifugation (5 Hours)

Reference Books

- The Cell: A Molecular Approach (2009) 5th ed., Cooper, G.M. and Hausman, R.E., ASMPress & Sunderland (Washington DC), Sinauer Associates, MA, ISBN:978-0-87893-300- 6.
- 2.Molecular Cell Biology (2012) 7th ed., Lodish, H., Berk, A., Zipursky, S.L., Matsudaira, P., Baltimore, D. and Darnell. J., W.H. Freeman & Company (New York), ISBN:13:978-1-4641-0981-2 / ISBN:10:1-4641-0981-8.

Modes of Evaluation: Quiz/Assignment/ presentation/ extempore/ WrittenExamination ExaminationScheme:

Components	Mid Term	Attendance	Class Assessment	End Term
Weightage (%)	20	10	30	40

	Mapping between COs and Pos				
	Course Outcomes (COs)	Mapped Program Outcomes			
CO1	Examine animal and plant cells	PO1, PO2,PO4			
CO2	Demonstrate micrographs of different cell components	PO1,PO2, PO3, PO4			
CO3	Illustratetheinteractionsofthecellsandhowcellular components are used to generate and utilize energy in cells	PO3, PO4,PO5, PO6, PO7, PO8			
CO4	Utilize their knowledge of cell biology to select examples of changes or losses in cell function and compare and contrast the events of cell cycle and its regulation.	PO7,PO10, PO11,PO12			
CO5	Appraise the laws of heredity with practical emphasis on inheritance.	PO1, PO6, PO8, PO9			

BIC11012	Course Code	
Cell Biology Lab	Course Title	
2	PO1	Fundamental Knowledge
2	PO2	Critical Thinking
3	PO3	Skill
3	PO4	Technical Knowledge
2	PO5	Logical Thinking Ability
2	PO6	Problem Identification
2	PO7	Analytical Knowledge
1	PO8	Career Goals
1	PO9	Team Work
1	PO10	Sustainable Development to Environment
1	PO11	Development to Society
1	PO12	. Development to Humanity

1=weakly mapped 2= moderately mapped

3=strongly mapped

Name: Enrolment No:			AMAS IVERSITY LE EXCELLENCE			
Semester: Odd2 Instructions:	Course: BIC11012 – Cell Biology LabProgram: B.SCBiochemistryTime: 03Hrs.Semester: Odd2019-20Max. Marks:40Instructions:					
Attempt all ques	tions					
1	Identify the monocyte from blood smearusingGimseastain.(A p)	10	CO3			
2	Evaluate the number of nuclei in the sample with respect to the number of WBC in per ml blood.(Ev)	10	CO3			
3	Note book.(Re/Un/Ap/Ev/An)	10	CO1, CO2, CO3, CO4,CO5			
4	Viva Voce. (Re/Un/Ap/Ev/An)	10	CO1, CO2, CO3, CO4, CO5			

BIC 11017	Clinical Biochemistry (THEORY)	L	Τ	Р	С
Version 1.0	Contact Hours - 60	2	0	0	2
Pre-requisites/Exposure	PLUS TWO (12 TH) LEVEL BIOLOGY AND BASIC KNOWLEDGE ABOUT HUMAN PHYSIOLOGY AT B.SC LEVEL				
Co-requisites					

Course Objectives

- 1. To provide students basic idea about instrumentation and automation in clinical biochemistry laboratories safetyregulations.
- 2. It will also provide in depth knowledge about different biochemical reactions that **a**used to determine different diseaseparameters.
- 3. Outlining the types of specimen for biochemicalanalysis.
- 4. To provide students different parameters like precision, accuracy, quality control, precautions and limitations that are used in clinicalbiochemistry.

Course Outcomes

On completion of this course, the students will be able to:

CO1. Define the fundamental biochemistry knowledge related to health.

CO2. Explain the clinical significance of the laboratory tests.

CO3. Evaluate different biochemical changes in different disease condition.

CO4. Evaluate the clinical biochemistry tests with their results.

CO5. Develop awareness of different lifestyle diseases increasingly found in present day.

Catalog Description

The core-course of 'Clinical Biochemistry' will help to understand the basic idea about instrumentation and automation in clinical biochemistry. This course includes comprehensive approach through studying different biochemical reactions that are used to determine different disease parameters. Furthermore, the implication of precision, accuracy, quality control, precautionsandlimitationsindifferenttestresultswillalsobe illuminated.Allthelectureswillbe devoted on discussions of basic theories and advanced topics, focusing on practical implementation of knowledge. Classes will be conducted by lecture as well as powerpoint presentation, audio visual virtual lab session as per requirement. The tutorials will enable the students with problem-solving ability led by the course coordinator. Students will perceive the basic concepts of the subject via exercise and discussions with the coordinator.

Course Content

SEC-3: CLINICAL BIOCHEMISTRY

Introduction: Organization of clinical laboratory, Introduction to instrumentation and automation in clinical biochemistry laboratories safety regulations and first aid. General comments on specimen collection, types of specimen for biochemical analysis. Precision, accuracy, quality control, precautions and limitations.

Exercises

i.Collection of blood andstorage.

ii. Separation and storage of serum. [20 LectureHours]

Evaluation of biochemical changes in diseases: Basic hepatic, renal and cardiovascular physiology. Biochemical symptoms associated with disease and their evaluation. Diagnostic biochemical profile.

Assessment of glucose metabolism in blood: Clinical significance of variations in blood glucose. Diabetes mellitus.

Exercises: Estimation of blood glucose by glucose oxidase peroxidase method. **[20 Lecture Hours]**

Lipid profile: Composition and functions of lipoproteins. Clinical significance of elevated lipoprotein.

Exercises: Estimation of triglycerides.

Liver function testsExercises: Estimation of bilirubin (direct and indirect).

Renal function tests and urine analysis: Use of urine strip / dipstick method for urine analysis. **Exercises**: Quantitative determination of serum creatinine and urea.

Tests for cardiovascular diseases: Involvement of enzymes in diagnostics of heart disease including aspartate transaminase, isoenzymes of creatine kinase and lactate dehydrogenase and troponin.

Exercises: Estimation of creatine kinase MB. [20 Lecture Hours]

SUGGESTED READINGS

- Medical Laboratory Technology a Procedure Manual for Routine Diagnostic Tess Vol.I(2010),Mukherjee,K.L.,TataMcGraw–HillPublishingCompanyLimited (New Delhi). ISBN:9780070076594 / ISBN:9780070076631
- Medical Laboratory Technology a Procedure Manual for Routine Diagnostic Tests VoI.II(2010), Mukherjee, K.L., TataMcGraw–HillPublishingCompanyLtd. (New Delhi), ISBN:9780070076648.
- Medical Biochemistry (2005) 2nded., Baynes, J.W. and Dominiczak, M.H., Ekevier Mosby Ltd. (Philadelphia), ISBN:0-7234-3341-0.
- 4. Experimental Biochemistry: A Student Companion (2005) Rao, B.S. and Deshpande, V., IK International Pvt. Ltd. (New Delhi), ISBN:81-88237-41-8.

Modes of Evaluation: Quiz/Assignment/ presentation/ extempore/ Written Examination Examination Scheme:

Components	Mid Term	Attendance	Class Assessment	End Term
Weightage (%)	20	10	30	40

	Mapping between COs and POs			
	Course Outcomes (COs)	Mapped Program Outcomes		
C O 1	Define the fundamental biochemistry knowledge related to health.	PO1, PO7		
CO2	Explain the clinical significance of the laboratory tests	PO1, PO2		
CO3	Evaluate different biochemical changes in different disease condition	PO1, PO2, PO3,PO7		
CO4	Relate the clinical biochemistry tests with their results	PO1, PO2, PO4, PO7		
CO5	Develop awareness of different lifestyle diseases increasingly found in present day	PO3, PO5, PO8, PO11		

BIC 11017	Course Code	
Clinical Biochemis try (THEORY)	Course Title	
ω	РО 1	Fundamental Knowledge
ω	РО 2	Critical Thinking
1	PO 3	Skill
2	PO 4	Technical Knowledge
2	PO 5	Logical Thinking Ability
I	6 6	Problem Identification
ω	PO 7	Analytical Knowledge
-	PO 8	Career Goals
ı	РО 9	Team Work
ı	PO1 0	Sustainable Development to Environment
	PO1 1	Development to Society
	PO1 2	. Development to Humanity

1=weakly mapped 2= moderately mapped 3=strongly mapped

Model Question Paper

Nar	ne:		
Enr	rolment No:	ADAMAS UNIVERSITY PURSUE EXCELLENCE	
Cou	rse: BIC 11017–Clinical Biochemistry (THEORY)		
	gram:B.Sc. Biochemistry nester:Odd 2019-20	Time: 03Hr Max. Mark	
Atte Sect	eructions: empt any four questions from Section A (each carrying tion B (each carrying 10 marks). CTION A (Attempt any Four questions)	5 marks); any two q	uestions from
	· · · · · · · · · · · · · · · · · · ·		0.01
1.	What is Diabetes mellites? Discuss the cause of this disease.(Re/Un)	2+3	CO1
2.	How can you measure blood glucose level? What is the normal range of blood sugar level? (Ap/Re)	he 4+1	CO2
3.	What is glycemic index? Explain various mechanism regulation of blood glucose.(Re/Un)	s for 2+3	CO3
4.	What is liver function test? Explain your answer(Re	e/Un) 2+3	CO4
5	Explain the cause and consequence of fatty liver disease.(Un)	5	CO5
	SECTION B (Attempt any Two questions)		·
6.	Demonstrate the importance of automation in a clinic laboratory.(Un)	tal 4+1+3+2	CO2
7.	Doyouthinkmeasuringbloodsugarlevelinfastingcondition true representation of sugar level for a diabetic Explain . If not, what will be better technique to re blood sugar level for a diabeticpatient? Why ?(Un/An)	patient?	CO1 CO2
8.	Outline the laboratory investigation of kidney of Discuss the potential pitfalls and how can you overco pitfalls.(Un/An)		CO1 CO2
9.	What is Atherosclerosis? What are the risk factors for coronary artery disease? What is the link between smo and heart disease? Explain your answer.(Un/Re)		CO4 CO5

SOC 14100	Community Service	L	Т	Р	C
Version 1.0		-	-	-	1
Pre-requisites/Exposure	Knowledge of Basic English				
Co-requisites	Knowledge of Basic Computer Skills				

Course Objectives

- •To familiarise the students on the concept'giving back to thesociety'.
- •To familiarize the students on the issues faced by marginalized communities.
- •To provide an experiential platform to the students on any one or two issues as ainternship.

Course Outcomes

On completion of this course, the students will be able to

CO1: Explain the concept of social responsibility through an internship.

CO2: Discuss about 'giving back to the society' through the concept of social responsibilitythrough aninternship.

Catalog Description

Along with Intelligent Quotient, it is important for students to enhance their Emotional Quotient as well. The Social Internship offers opportunity to the student to be empathetic towards social issues facing our society. To help and support the affected community / cause through a field internship is the essence of the course in 'giving back to the society'.

Course Content

Unit I:

Introduction to the course. A brief on social issues facing the society with both global and Indian examples.

Unit II:

Minimum 24 hours of field work on a social issue and helping the marginalized / affected community / cause with photographs and testimonies.

Unit III:

Submission of individual reflection on the social service rendered.

The benefits that accrue to the students are

A.)Subjective

- 1.Psychosomatic benefits: Volunteering increases overall life satisfaction and also helps **b**relive stress and acts as ananti-depressant.
- 2. Intellectual benefits: Enhances knowledge through new experiences, and develops communicationskills.
- 3.Career benefits : Enhances career prospects by acquisition of work-related skills, builds good references for employers and provides a forum to network with future potential

employers. It also The experience allows gained helps students to take up leadership positions. Letters of recommendation can also be easily sought. Research shows that students who indulge in volunteer word perform better in studies as it invigorates their passion forlearning

- 4. Personal benefits : Real world skills like leadership, problem-solving, collaboration with others, time management and communication skills, learn patience and empathy.
- 5. Connect learning to real world and enables deeper and lifelonglearning.

B.)Community

1. Collective benefits: Strong interpersonal bonds are created, and leads to increased civic and social awareness and responsibility.

Further Reading :

- 1. Tadevosyan, Gohar&Schoenhuth, Michael. Participatory Research Approach : Principles, Challenges and Perspectives.<u>http://ysu.am/files/01G_Tadevosyan_M_Schoenhuth.pdf</u>
- 2.Bergold, Jarg& Thomas Stefan. Participatory Research Methods: A Methodological Approach in Motion <u>http://www.qualitative-</u> research.net/index.php/fgs/article/view/1801/3334

Plan of Work

- 1. Readingonsocialissuesfacing the society with both global and Indian examples.
- 2. Selecting an issue where the student wishes to contribute and wants to make adifference.
- 3. Areas The internship may be broadly completed by getting in touch with NGO in yourcity / town / Police / Municipal Corporation / Local Gram Panchayat / Hospital / State Health Department / Women & Child Development Centre / CSR departments of Corporates /school / Old Age Home / Orphanage / Literacy Drive / AanganwadiCentres / etc.
- 4. Online Discussion Throughdiscussion, students elaborate their preferred area of work with reference to the Global Scenario and India. Reason for choosing that area also needs and resources of the people in their area of Social Internship and also submit the testimonials, which include signature of the authority where students initiated theirwork, or the signature of the authority in whose area students are currently working or photographsof work (photographs must include studentsworking).
- 5. Final Report Submission Submission of the Testimonials include signatures of hauthorities you have worked with, or the signature of the authority in whose area you have worked or photographs of your work (photographs must include you working). Students' accomplishmentintheir area of operational on gwith the major successes student experienced and major challenges faced.
- 6. Students will submit the complete elaborated report along with testimonials and completion certificate in the form of signedTemplate
- The registration for all students will open twice, during winter and summer breaks. The may enroll for the internship in either of the twobreaks.
- The student will have to submit a continuous record of their 10 to 15 days internship in **b** form of photographs and testimonies (whereverrequired).

Mode and Scheme of Online Evaluation:

Modes of Evaluation: Online – Quiz / Assignment / Discussions / Case Studies Examination Scheme:

Component	s Attendance	Internal Assessment	ETE
		(Discussion+Initiating Internship Template) MTE	(Detailed Report Submission + Testimonials Photographs / Student Experience Sharing Video)
Weightage (%	(b) 10	30	60

Relationship between the Course Outcomes (COs) and Program Outcomes (POs)

	Mapping between COs and POs					
	Course Outcomes (COs)	Mapped Program Outcomes				
CO1	Explain the concept of social responsibility through an internship.	PO6, PO9, PO12				
CO2	Discuss about 'giving back to the society' through the concept of social responsibility through an internship.	PO6, PO9, PO12				

Course	Course	Fundamental Knowledge	Critical Thinking	Skill	Technical Knowledge	Gd Logical Thinking	Problem Identification Ability		Career Goals	Team Work	Sustainable Development to Environment	Development to Society.	Development to Humanity
Code	Title	PO1	PO2	PO3	PO4	105	PO6	PO7	PO8	PO9	PO10	PO11	PO12
SOC141 00	Community Service						3			3			3

1=weakly mapped

2= moderately mapped

3=strongly mapped

EIC11001	Venture Ideation	L	Т	Р	С
Version 2.0	Contact Hours: 30	2	0	0	2
Pre-requisites/Exposure	Basic knowledge of English and computer applications such as Internet Explorer and MS Office				
Co-requisites					

Course Objectives

- 1. To help the students understand the way to be an Entrepreneur2.
- To identify the right businessopportunity
- 3. To empower students to perform a technical feasibility study and thereby developing **p**rototype
- 4. To help students in identifying their customers using primary and secondary research methods.
- 5. Expose students to various factors of market and competition with the help of market feasibility study, forecasting techniques, business model canvass and insights about financial statements.
- 6. To prepare students with finalizing their entrepreneurialPortfolio

Course Outcomes

On completion of this course, the students will be able to:

- CO1. Assess personal capacity in the context of the entrepreneurial process
- CO2. Compare characteristics of successful entrepreneurs and entrepreneurial forms and processes
- CO3. Construct resources, research and tools for Entrepreneurial ventures
- CO4. Examine opportunity identification techniques, feasibility terminology, processes and models
- CO5. Develop Ideation and planning documents for entrepreneurial venture

Catalogoue Description

Over the last decade, the core of our economy has been transitioning from one of industrial might, large monolithic corporations and mass production towards one of networks, flexible enterprises comprising many smaller units and unique value. This new economy is based on innovation originating in creativity and design; it is also disrupting long-standing and established employment patterns and bringing to the fore the importance of entrepreneurship. This core unit will bring together creativity, design and entrepreneurship at the conceptual and more practical level. It aimsto explore the nature, determinants and consequences of creativity, design and entrepreneurship as well as the interaction between them.

Course Content

Unit1.Introduction

6hours

Preview of the Course, Introduction to the Course, Guest Lecture with U.S. Secretary of Commerce Penny Pritzker – Meaning of Innovation, Entrepreneurial opportunities, Factors influencing the feasibilityofaninnovation,Innovationstrategy:technology-pushormarket-pull,Product-market fit, How to develop a business model, Walkthrough of the business model canvas, Welcome to Innovation for Entrepreneurs: From Idea to Marketplace.

Unit 2. Customer DiscoveryandValidation

Customertypes,Customerarchetypes,Customersegmentsandbusinessmodels,Customersegments, value propositions, product features, value mapping, interviewing customer, insights of your customers.

Unit 3: Product UnderstandingandMarketing.

Customer value, The DNA of customer-centricity, Crossing the chasm, Qualitative and quantitative marketingresearch, importance and methods of markets egmentation, Focusing on the target market, Beyond the chasm, Strategic implications of beyond the chasm, E-commerce: The internet as a selling platform.

Unit 4. PrototypingandTesting.

9hours

Planning for prototyping,Rapid prototyping and development, Lean startup MVPs, Choosing a wire framing/UX prototyping tool, Anatomy of an experience map, What you'll learn from user testing, Analytics and insight, Troubleshooting your customer discovery, Levels of aproduct/service.

ModesofEvaluation:Quiz/Assignment/presentation/extempore/WrittenExamination

Components	MTE	Attendance	Presentation/Assignment/ etc	ЕТЕ
Weightage (%)	20	10	20	40

Relationship between the Program Outcomes (POs), Program Specific Outcomes (PSOs) and Course Outcomes (COs)

	Mapping between COs and POs					
	Course Outcomes (COs)					
CO1	Assess personal capacity in the context of the entrepreneurial process	PO6, PO11				
CO2	Compare characteristics of successful entrepreneurs and entrepreneurial forms and processes	PO6, PO11				
CO3	Construct resources, research and tools for Entrepreneurial ventures	PO6, PO8, PO11				
CO4	Examine opportunity identification techniques, feasibility terminology, processes andmodels	PO6, PO8, PO11				
CO5	Develop Ideation and planning documents for entrepreneurial venture	PO6, PO8, PO11				

1=Weaklymapped

2=Moderatelymapped

3=Stronglymapped

9hours

EIC11001	Course Code	
Venture Ideation	Course Title	
	PO1	Engineering Knowledge
	PO2	Problem analysis
	PO3	Design/development of solutions
)4	Conduct investigations of complex problems
	PO5	Modern tool usage
ω	PO6	The engineer and society
	PO7	Environment and sustainability
ω	PO8	Ethics
	PO9	Individual and team work
		Communication
3	PO11	Project management and finance
	PO12	Life-long Learning
	PSO1	
	PSO2	

Semester 4

BIC11018	Gene organization, replication and repair	L	Т	Р	С	
Version 1.0	Contact Hours: 60	3	1	0	4	
Pre-requisites/Exposure	Knowledge of Theory of Biomolecules at B.Sc Level					
Co-requisites	Class 12 level Biology knowledge -					

Course Objectives

- 1. To acquire the concepts of the basic principles ofheredity.
- 2. To understand causal relationships between molecule-cell levelPhenomena
- 3. To analyse the molecular consequences aboutlinkage, crossing over and mapping techniques
- 4. To conceptualize molecular basis of DNAdamage
- 5. To learn about gene repair mechanisms in prokaryotes and eukaryotes.

Course Outcomes

On completion of this course, the students will be able to

- **CO1 build**theconceptsofthebasicprinciplesofinheritanceatthemolecular, cellular and organismallevels.
- **CO2 formulate** causal relationships between molecule-cell level phenomena (moderngenetics)andorganism-levelpatternsofheredity(classicalgenetics).
- CO3 discuss linkage, crossing over and mappingtechniques.
- **CO4** interpret molecular basis of mutations.
- **CO5 discuss**theinheritanceofcomplextraits&populationgeneticsand evolutionarygenetics.

Catalog Description

DNA is replicated prior to cell division. In this process, DNA polymerase uses an original strand as a template to create a new daughter strand of DNA. Polymerization occurs in the 5' to 3' direction, creating a new strand that is anti-parallel to the original. Polymerization begins at a specificDNAsequencecalledtheOriginofReplicationandproceedsintwodirectionsalongboth templatestrands.Becauseofthedirectionalityofsynthesis,onestrandissynthesizedcontinuously, while the other strand is synthesized in small fragments, which are then joined together by DNA ligase.

Course Content

1.Unit I Structure of DNA [15 LectureHour]DNA structure, features of the double helix, various forms of DNA, denaturation and reassociation of DNA.2.Unit II Genes and genomic organization [10 LectureHour]

Genome sequence and chromosome diversity, definition of a gene, organization of genes in

viruses, bacteria, animals and plants. Nucleosome structure and packaging of DNA into higher order structures.

3. Unit III Replication of DNA [30 LectureHour]

The chemistry of DNA synthesis, DNA polymerase, the replication fork, origin of replication, enzymes and proteins in DNA replication, various modes of replication, stages of replication of E. coli chromosome, relationship between replication and cell division, replication in eukaryotes. Comparison of replication in prokaryotes and eukaryotes. Inhibitors of DNA replication and applications in medicine. Supercoiling of DNA.

Unit IV Repair of DNA [5 Lecture Hour]

Reference Books

- Molecular Biology of the Gene (2008) 6th ed., Watson, J.D., Baker, T.A., Bel, S.P., Gann, A., Levine, M. and Losick, R., Cold Spring Harbor Laboratory Press, Cold spring Harbor (New York), ISBN:0-321-50781 / ISBN:978-0-321-50781-5.
- 2.Lehninger: Principles of Biochemistry (2013) 6th ed., Nelson, D.L. and Cox, M.M., W. H. Freeman & Company (New York), ISBN:13: 978-1-4292-3414-6 / ISBN:10-14641-0962-1.

Modes of Evaluation: Quiz/Assignment/ presentation/ extempore/ Written Examination Examination Scheme:

Components	Mid Term	Attendance	Class Assessment	End Term	
Weightage (%)	20	10	30	40	

Relationship between the Course Outcomes (COs) and Program Outcomes (POs)

	Mapping between COs and Pos					
	Course Outcomes (COs)	Mapped Program Outcomes				
CO1	Build the concepts of the basic principles of inheritance at the molecular, cellular and organismal levels	PO1, PO2				
CO2	Formulate causal relationships between molecule-cell level phenomena (modern genetics) and organism-level patterns of heredity (classical genetics).	PO1,PO2, PO3,				
CO3	Discuss linkage, crossing over and mapping techniques	PO1, PO3, PO4				
CO4	Interpret molecular basis of mutations	PO6, PO7, PO10				
CO5	Discuss the inheritance of complex traits & population genetics and evolutionary genetics	PO8, PO9, PO11, PO10, PO12				

BIC1101 8	Course Code	
Gene organizati on, replication and repair	Course Title	
ω	РО 1	Fundamental Knowledge
53	РО 2	Critical Thinking
3	PO 3	Skill
1	PO 4	Technical Knowledge
3	PO 5	Logical Thinking Ability
2	6 6	Problem Identification
2	PO 7	Analytical Knowledge
1	PO 8	Career Goals
1	РО 9	Team Work
-	PO1 0	Sustainable Development to Environment
2	PO1 1	Development to Society
1	PO1 2	. Development to Humanity

1=weakly mapped 2= moderately mapped 3=strongly mapped

Model Question Paper

Name:

Enrolment No:

Course: BIC11018 Gene organization, replication and repairProgram: B.SCBiochemistryTime: 03Hrs.Semester:Even2019-20Max. Marks:40

Instructions:

Attempt any three questions from Section A (each carrying 4 marks); any four Questions from Section B (each carrying 7 marks).

	Section A (Attemptany Th	ree)	
1.	Explain semi-conservative replication. (U)	4	C01
2.	Explain how DNA erosion occurs and how it is prevented. (U), (R)	4	CO2
3.	How can the speed of DNA replication increase while the rate of replication remains constant? (R)	4	CO3
4.	Between the two strands of a DNA segment the nitrogen bases areheld together by. Explain . a. covalent bonds b. hydrogen bonds c. ionic bonds d. metallic bonds	4	CO3
	SECTION B (Attempt any FOUR Questions)		
5.	What about stem cells? They aren't limited to 50 divisions. Stem cells can divide indefinitely. What makes a stem cell impervious to erosion? (R)	7	CO4
6.	Create the complimentary strand for the DNA strand below. Make sure to label the parts and direction of the strand. 5'-AACGGTCCAGTCCAAGTTACG- 3'(Ap)	7	CO3,CO5
7.	Below is a segment of DNA that is ready to be replicated. Show the processes that the segment will go through during replication. Make sure to include the names of the enzymes that are involved. (Ap) AATTGCCTGCTAGTCTCAG TTAACGGACGATCAGAGTC	7	CO4

8.	Describe some common chromosomal mutations: inversions, deletions, duplications, fusions, fissions, and translocations. (U),	7	CO5
9.	Name the two basic kinds of point mutations. (U),	7	CO1

BIC12019	GENE ORGANIZATION, REPLICATION AND REPAIR LAB (PRACTICAL)		Τ	Р	С	
Version 1.0 Contact Hours - 45			0	3	2	
Pre-requisites/Exposure	Basic knowledge of Organic Chemistry and Protein					
Biochemistry, Cell Biology at B.Sc level						
Co-requisites						

Course objective

- 1. To acquire the concepts of the basic principles ofheredity.
- 2. To understand causal relationships between molecule-cell levelPhenomena
- 3. To analyse the molecular consequences aboutlinkage, crossing over and mappingtechniques
- 4. To conceptualize molecular basis of DNAdamage
- 5. To learn about gene repair mechanisms in prokaryotes and eukaryotes.

Course Outcomes

On completion of this course, the students will be able to

- **CO1 build**theconceptsofthebasicprinciplesofinheritanceatthemolecular, cellular and organismallevels.
- CO2 formulate causal relationships between molecule-cell level phenomena (moderngenetics)andorganism-levelpatternsofheredity(classicalgenetics).

CO3 discuss linkage, crossing over and mappingtechniques.

CO4interpret molecular basis of mutations.

CO5 discusstheinheritanceofcomplextraits&populationgeneticsand evolutionarygenetics.

Content

- 1. Verification of Chargaff's rule by paper chromatography.
- 2. Ultraviolet absorption spectrum of DNA and RNA.
- 3. Determination of DNA and RNA concentration by A260nm.
- 4. Determination of the melting temperature and GC content of DNA.
- 5. To study the viscosity of DNA solutions.
- 6. Isolation of chromosomal DNA from *E. coli* cells.

SUGGESTED READINGS

1. Molecular Biology of the Gene (2008) 6th ed., Watson, J.D., Baker, T.A., Bell, S.P., Gann, A., Levine, M. and Losick, R., Cold Spring Harbor Laboratory Press, Cold spring Harbor (New York), ISBN:0-321-50781 / ISBN:978-0-321-50781-5.

2. Lehninger: Principles of Biochemistry (2013) 6th ed., Nelson, D.L. and Cox, M.M., W. H.

Freeman & Company (New York), ISBN:13: 978-1-4292-3414-6 / ISBN:10-14641-0962-1. 3. Principles of Genetics (2010) 5th ed., Snustad, D.P. and Simmons, M.J., John Wiley & Sons Asia, ISBN:978-0-470-39842-5.

BIC11022	Membrane Biology and Bioenergetics (THEORY)	L	Τ	Р	C	
Version 1.0	Contact Hours - 60	3	1	0	4	
Pre-requisites/Exposure	Basic knowledge of Organic Chemistry and Protein					
Biochemistry, Cell Biology at B.Sc level						
Co-requisites						

Course Objectives:

- 1. The main focus of the course is to cover the fundamental aspects of the structure and function of biological membranes and energy transformation in living organisms at a molecular level with the emphasis on modern methods of investigation.
- 2. It will provide a basic understanding about the signal transduction mechanism across the cell membrane important to run the cellular processes inhomeostasis.
- **3.** The course will further provide a details about membrane proteins in terms of important drugtargets.

Course outcome:

The students will be able to

- **1. develop** the knowledge about fundamental aspects of composition, structure and functioningofbiologicalmembranesandenergytransformationinlivingorganisms.
- 2. Explain the laws of chemical thermodynamics, in terms of energetical processes in living cells, biological role of membrane structures, and the associated energy transformation mechanisms.
- **3.** Identify the ways of energy transformation in animal and plant cells, archaea and bacteria, to describe the membrane transport mechanisms; to describe the processof synthesis of ATP bychemiosmosis.
- 4. Examinethepreparationofartificialmembranes, with their applications and limitations in membrane researchmethods;
- **5.** Utilizemethodsofstudiesofbiologicalmembranesandbioenergeticstosolve fundamental problems in biomedicine and to use for the applied research in biotechnology.

Catalogoue Description:

MembraneBiologyandbioenergeticsistheoreticalcourseaimedatenlighteningstudentsonthe structure-function relationship of biological membranes. The course outline includes membrane structure and function, role of membrane in cellular processes (signal transduction, solute transport, signalling, etc.), plasma membrane - chemical composition, fluidity, dynamic nature (cellfusionandproteindiffusion),membranetransport(diffusion,facilitatedandactivetransport, energetics), membrane potential and nerve impulses, structure and function of endomembrane system (endoplasmic reticulum, Golgi complex, endosomes, lysosomes, cellular uptake (phagocytosis and endocytosis), chemical thermodynamics, high-energy compounds, electron transport system and oxidative phosphorylation, regulation of ATP production, oxidationsreductions, chemical potentials and electrochemicalpotentials.

Course Content

UnitI

Introduction to biomembranes: Composition of biomembranes - prokaryotic, eukaryotic, neuronal and subcellular membranes.Study of membrane proteins.Fluid mosaic model with experimental proof.Monolayer, planer bilayer and liposomes as model membrane systems.Membrane structures and dynamics:Polymorphic structures of amphiphilic molecules in micelles and bilayers. aqueous solutions _ CMC. critical packing parameter.Membraneasymmetry.Macro and micro domains in membranes. Membrane skeleton, lipid rafts, caveolae and tight junctions. RBC membrane architecture.Lateral, transverse and rotational motion of lipids and proteins. Techniques used to study membrane dynamics - FRAP, TNBSlabellingetc.Transitionstudiesoflipidbilayer,transitiontemperature.Membranefluidity, factors affecting membranefluidity.

UnitII

Membrane transport: Thermodynamics of transport. Simple diffusion and facilitated diffusion. Passive transport - glucose transporter, anion transporter and porins.Primary active transporters -P type ATPases, V type ATPases, F type ATPases. Secondary active transporters - lactose permease, Na+glucosesymporter.ABC family of transporters - MDR, CFTR.Group translocation. Ion channels - voltage-gated ion channels (Na+/K+ voltage-gated channel), ligand-gated ion channels (acetyl choline receptor), aquaporins, and bacteriorhodopsin. Ionophores - valinomycin, gramicidin.

UnitIII

Vesicular transport and membrane fusion: Types of vesicle transport and their function - clathrin, COP I and COP II coated vesicles. Molecular mechanism of vesicular transport. Membrane fusion. Receptor mediated endocytosis of transferrin.

UnitIV

Lawsofthermodynamics,statefunctions,equilibriumconstant,coupledreactions,energycharge, ATPcycle,phosphorylationpotential,phosphorylgrouptransfers.Chemicalbasisofhighstandard energy of hydrolysis of ATP, other phosphorylated compounds and thioesters.Redox reactions, standard redox potentials and Nernst equation.Universal electroncarriers.

UnitV

Oxidative phosphorylation and photophosphorylation: Mitochondria Electron transport chain - its organization and function.Inhibitors of ETC and uncouplers.Peter Mitchell's chemiosmotic hypothesis.Proton motive force. Fo-F1ATP synthase, structure and mechanism of ATP synthesis.Metabolite transporters in mitochondria.Regulation of oxidative phosphorylation.ROS production and antioxidant mechanisms.Thermogenesis.Alternative respiratory pathways in plants.General features of photophosphorylation, historical background, Hills reaction, and photosynthetic pigments, light harvesting systems of plants and microbes and resonance energy transfer. Bacterial photophosphorylation in purple bacteria, Greensulphur bacteria and *Halobacterium salinarum*. Photophosphorylation in plants - structure of chloroplast, molecular architecture of Photosystem I and Photosystem II, Z-scheme of photophosphorylation and its significance.Photoinhibition.Evolution of oxygenic photosynthesis.

Suggested Books:

1. Lehninger: Principles of Biochemistry (2013) 6th ed., Nelson, D.L. and Cox, M.M., WH Freeman and Company (New York), ISBN: 13:978-1-4641-0962-1 / ISBN:10:1-4641-0962-1.

15 LectureHours

15 LectureHours

10 LectureHours

5 LectureHours

15 LectureHours

- 2. Molecular Cell Biology (2013) 7th ed., Lodish, H., Berk, A., Kaiser, C.A., Krieger, MBretscher, A., Ploegh, H., Amon, A. and Scott, M.P., W.H. Freeman & Company (New York), ISBN:13:978-1-4641-0981-2.
- 3.Biochemistry (2010) 4th ed., Garret, R. H. and Grisham, C.M., Cengage Learning (Boston), ISBN-13:978-0-495-11464-2.
- 4.. Principles of Biochemistry (2008) 3rd ed., Voet, D.J., Voet, J.G. and Pratt, C.W., Jun Wiley & Sons, Inc. (New York), ISBN:13:978-0470-23396-2

Modes of Examination: Assignment/Quiz/Project/Presentation/Written Exam

Examination Scheme:

Components	Internal	Attendance	Mid Term	End Term
Weightage (%)	30	10	20	40

Relationship between the Course Outcomes (COs) and Program Outcomes (POs)

	Mapping between COs and POs						
	Course Outcomes (COs)	Mapped Program Outcomes					
CO-1	Explain the fundamental aspects of composition, structure and functioning of biological membranes and energy transformation in living organisms	PO1, PO2					
CO-2	Develop the laws of chemical thermodynamics, in terms of energetically process in living cells, biological role of membrane structures, and the associated energy transformation mechanisms.	PO1, PO2, PO5					
СО-3	Identify the ways of energy transformation in animal and plant cells, archaea and bacteria, to describe the membrane transport mechanisms; to describe the process of synthesis of ATP by chemiosmosis.	PO3, PO4					
CO-4	Examine the preparation of artificial membranes, with their applications and limitations in membrane research methods	PO2, PO4, PO6					
CO-5	Utilize the methods of studies of biological membranes and bioenergetics to solve fundamental problems in biomedicine and to use for the applied research in biotechnology.	PO3, PO5, PO7, PO8, PO10					

BIC11022	Course Code	
Membran e Biology and Bioenerget ics(THEO RY)	Course Title	
2	РО 1	Fundamental Knowledge
3	РО 2	Critical Thinking
2	РО 3	Skills
2	PO 4	Technical Knowledge
N	PO 5	Logical Thinking
1	6 б	Problem identification ability
1	РО 7	Analytical Knowledge
1	РО 8	Career goals
I	РО 9	Team Work
-	PO 10	Sustainable Development to environment
· ·	РО 11	Development to society
,	PO12	Development to humanity

1=weakly mapped 2= moderately mapped 3=strongly mapped

Model Question Paper

Enrolment No:

Course: BIC11022 - Membrane Biology and Bioenergetics(THEORY)Program: B.Sc.BiochemistryTime: 03Hrs.Semester:Even2020-21Max. Marks:40

Instructions:

Attempt any **four** questions from **Section A** (each carrying 5 marks); any **two** questions from **Section B** (each carrying 10 marks).

SE	CTION A (Attemptany Four questions)		
1.	Outline antiporters with suitable example.(Un)	5	CO1
2.	Explain the role of physicochemical properties in relation to biological activity and drug design. (Un)	5	CO2
3.	Discuss active transport mechanism across plasma membrane using an example of Na ⁺ -K ⁺ pump. (Cr)	5	CO2 CO3
4.	How plasma membrane components influence the folding of membrane proteins? (Re)	5	CO4
5	How hydropathy plots contribute for analysis of membrane protein? (Re)	5	CO5
	SECTION B (Attempt any Two questions)		
6.	Which receptor regulate the activation mechanism of GLUT transporters and how? What are the differences between receptors and transporters?(Re)	5+5	CO1 CO2
7.	Classify three important components of plasma membrane required for its fluid mosaic properties and functionalities.(Un)	10	CO1 CO2
8.	How electron transport chain is coupled to ATP synthase complex in oxidative phosphorylation? Does ETC have a role in anaerobic bacteria? (Re)	6+4	CO3 CO4
9	What are the forces involved in drug-receptor interaction important to modify the downstream signaling pathway? What is biased agonism in terms of G-protein coupled receptor signaling pathway? (Re)	5+5	CO5

BIC11020	Immunology	L	Т	Р	С
Version 1.0	Contact Hours - 60	4	0	0	4
Pre-requisites/Exposure	Basic Human Physiology at B.Sc level	•			
Co-requisites					

Course Objectives:

- 1. To provide basic understanding of our immune system and its medicalimplication.
- 2. To provide basic understanding B-cell, T-cell, antibody structure and their interaction withantigen.
- To provide basic understanding of the activation, mechanism and regulation of himmune system and Host pathogeninteraction.

Course Outcomes

On completion of this course, the students will be able to

- CO1. demonstrateacoherentunderstandingofthefundamentalconcepts inImmunologyand understanding the complex relations among components of the immunesystem.
- CO2. develop concept about immunoglobulin structures and diversity of antibodies, B-cell,T-cell, and their interaction withantigen.
- CO3. explain the knowledge about basic mechanisms of hypersensitivity responses and their associations with different diseases.
- CO4. discussbasicunderstandingofimmunologyandimmuneresponsesinresponsetovarious infectious and non-infectious diseases.
- CO5. develop awareness of the current research activities in the field and possibleapplications of this knowledge for the betterment ofhumanity.

Catalog Description:

Immunology and Medical Biotechnology course will provide an through understanding of the principles and mechanisms of the immune system and immune responses in the context of infection,malignancyandimmunologicaldisorders.Allthelectureswillbedevotedondiscussions of basictheories and advanced topics, focusing on practical implementation of knowledge.Classes will be conducted by lecture as well as power point presentation, audio visual virtual lab session asperrequirement.The tutorial swill familiarize the students with

practical problem-solving techniques led by the course coordinator. Students will strongly grab the basic concepts of the subject via exercise and discussions with the coordinator.

Course Content:

IMMUNOLOGY

UNITI 10 LectureHours

Introduction:

Concept of Innate and Adaptive immunity; Contributions of following scientists to the development of field of immunology - Edward Jenner, Karl Landsteiner, Robert Koch, Paul Ehrlich, Elie Metchnikoff, Peter Medawar, MacFarlane Burnet, NeilsK Jerne, Rodney Porter and Susumu Tonegawa.

UNITII 5 LectureHours

Immune Cells and Organs:

Structure, Functions and Properties of: Immune Cells – Stem cell, T cell, B cell, NK cell, Macrophage, Neutrophil, Eosinophil, Basophil, Mast cell, Dendritic cell; and Immune Organs – Bone Marrow, Thymus, Lymph Node, Spleen, GALT, MALT, CALT

UNITIII 5 LectureHours

Antigens:

Characteristics of an antigen (Foreignness, Molecular size and Heterogeneity); Haptens; Epitopes (T & B cell epitopes); T-dependent and T-independent antigens; Adjuvants. Cytokines: Different Types and Functions.

UNITIV 7 LectureHours

Antibodies:

Structure, Types, Functions and Properties of antibodies; Antigenic determinants on antibodies (Isotypic, allotypic, idiotypic); VDJ rearrangements; Monoclonal and Chimeric antibodies.

UNITV 7 LectureHours

Major Histocompatibility Complex:

Organization of MHC locus (Mice & Human); Structure and Functions of MHC I & II molecules; Antigen processing and presentation (Cytosolic and Endocytic pathways)

UNITVI 7 LectureHours

Complement System:

Components of the Complement system; Activation pathways (Classical, Alternative and Lectin pathways); Biological consequences of complement Activation

UNITVII 9 LectureHours

Generation of Immune Response:

Primary and Secondary Immune Response; Generation of Humoral Immune Response (Plasma and Memory cells); Generation of Cell Mediated Immune Response (Self MHC restriction, Tcell activation, Co- stimulatory signals); Killing Mechanisms by CTL and NK cells, Introductionto tolerance. : Immunological basis of graft rejection, clinical manifestations, immunosuppressive therapy and privileged sites. Vaccines - active and passive immunization, types of vaccines.

UNITVIII 5 LectureHours

Immunological Disorders and Tumor Immunity:

Types of Autoimmunity and Hypersensitivity with examples; Immunodeficiencies - Animal models (Nude and SCID mice), SCID, DiGeorge syndrome, Chediak- Higashi syndrome, Leukocyteadhesiondeficiency,CGD;Typesoftumours,tumourAntigens,causesandtherapyfor cancers.

UNITIX 5 LectureHours

Immunological Techniques:

Principles of Precipitation, Agglutination, Immunodiffusion, Immunoelectrophoresis, ELISA, ELISPOT, Western blotting, Immunofluoresence, Flow cytometry, Immunoelectron microscopy.

Reference Books

Suggested Books:

1. Kuby Immunology by Judy Owen, Jenni Punt, Sharon Stranford, 2013

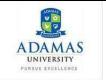
- 2. Roitt's Essential Immunology (Essentials) by Ivan M. Roitt, 2016
- 3. Medical Microbiology & Immunology by Warren Levinson, 2004
- 4. Basic and Clinical Immunology by Mark Peakman

Modes of Evaluation: Quiz/Assignment/ presentation/ extempore/ Written Examination Examination Scheme:

Components	Mid Term	m Attendance Class Assessment		End Term
Weightage (%)	20	10	30	40

Relationship between the Course Outcomes (COs) and Program Outcomes (POs)

	Mapping between COs and POs	
	Course Outcomes (COs)	Mapped Program Outcomes
CO1	Demonstrate a coherent understanding of the fundamental concepts in Immunology and understanding the complex relations among components of the immune system.	PO1, PO2, PO5, PO6,
CO2	Develop knowledge about immunoglobulin structures and diversity of antibodies, B-cell, T-cell, and their interaction with antigen.	PO1, PO2, PO5, PO6, PO9, PO3
CO3	Explain the basic mechanisms of hypersensitivity responses and their associations with different diseases.	PO1, PO2, PO3, PO4, PO5, PO6, PO7
CO4	Discuss basic understanding of immunology and immune responses in response to various infectious and non-infectious diseases.	PO1, PO2, PO4, PO5, PO6, PO7
CO5	Develop awareness of the current research activities in the field and possible applications of this knowledge for the betterment of humanity.	PO1, PO8, PO9, PO10, PO11, PO12


-c =[BIC11020	Course Code	
l=weakly mapped	Immunology (THEORY)	Course Title	
b	З	PO1	Fundamental Knowledge
	з	PO2	Critical Thinking
	1	PO3	Skills
	1	PO4	Technical Knowledge
	3	PO5	Logical Thinking
	ω	PO6	Problem identification ability
	2	PO7	Analytical Knowledge
	2	PO8	Career goals
		PO9	Team Work
		PO10	Sustainable Development to environment
	1	PO11	Development to society
	1	PO12	Development to humanity

3=strongly mapped 2= moderately mapped

Model Question Paper

Name:

Enrolment No:

Course: BIC11020–IMMUNOLOGY (THEORY) Program: B.Sc. BiochemistryTime: 03 Hrs. Semester:Odd20xx-20xx

Max. Marks:40

Instructions:

Attempt **all** the questions from **Section A** (each carrying 5 marks); **all**the questions from **Section B** (each carrying 10 marks).

SEC	CTION A (Attempt all the questions)		
1.	Explain the working principle of an adjuvant. List two Examples of adjuvant. (R) (U)	5	CO1, CO2, CO3, CO5
2.	 (i) A 17-year-old boy suffered an injury to his left eye when, during a car crash near Barasat railway station, a sharp sliver of glass penetrated his eye, damaging his lens and uveal tract. The glass was removed and the injury repaired with complete recovery. However, 3weekslaterhenoticedsomerednessinthelefteyeandphotophobia, followed by pain and severe visual impairment. The left eye was removed and histologic examination showed an extensively infiltrated uveal tract with abundant lymphocytes and mononuclear cells. Two weeks later the other eye began to show thesame symptoms. Since the lens was damaged the most likely scenario is that: (Explain your answer)(U)(Ev) A. this is an example of immediatehypersensitivity. B. sequestered antigen was released and initiated an immune response. C. some of the glass must have penetrated the right eye aswell. D. the bacteria entered the damaged eye and is causing an infection in botheyes. 	5	CO2, CO3
3.	Explain the cytokine signalling through JAK-STAT pathway.(U)	5	CO1
4.	Compareandcontrastinnateandadaptiveimmunitybyidentifying (matching) the following characteristics with the correct arm of immunity, using I for innate and A for adaptive: (U)(Ap) (A) Is the first to engage upon initial encounter with antigen (B) Is the most pathogen specific (C) Employs T and Blymphocytes (D) Adapts during theresponse	5	CO2, CO4

	SECTION B (Attempt all the questions)		
5.	 (a) Explain the immune mechanism involved in Rheumatoid arthritis (U) (b) Compare and contrast immunological basis of Grave's disease and Myasthenia gravis. (U)(A) 	10	CO4
6.	Explain the classical and alternative pathway of compliment activation. (Ev)	10	CO3, CO4

BIC12021	IMMUNOLOGY LAB (PRACTICAL)	L	Т	P	C		
Version 1.0	Contact Hours - 45	0	0	3	2		
Pre- requisites/Exposure	Basic knowledge about Immunology Theory B.Sc level						
Co-requisites							

Course Objectives

1.to demonstrate and interpret different antigen-antibodyinteractions.

2.to acquaint with various components of the immune system and apply this knowledge in immunodiagnostics.

3.to apply various immunological techniques for clinical and researchpurpose.

4.to do quantitative/qualitative measurement of antigen/ antibody in different samples.

5. to analyze and assess antigen-antibodyinteraction

Course Outcomes

On completion of this course, the students will be able to

CO1.	evaluate different antigen-antibodyinteractions.
CO2.	identify different components of immune system in humansystem
CO3.	utilize different immunological techniques for research and clinical purposes.
CO4.	estimateandcompareamountofantigen/antibodypresentindifferentsamples
CO5.	assess antigen-antibody interaction

Catalog Description

The student will be able to use the knowledge obtained to perform and analyze different types of antigen-antibody interaction. Identification of different components of the immune system is possible with the conceptobtained. Students will gain the ability to apply different immunological techniques for research and clinical purposes. All the experiments will be based on hands-on training in laboratory setup along with discussions of basic theories and advanced topics for practical implementation of knowledge. Classes will be conducted by hands-on laboratory of audio-visual virtual lab session as per requirement. Students will perceive the basic concepts of the subject via exercise and discussions with the coordinator.

CourseContent

IMMUNOLOGY LAB

^{2.} To perform Total Leukocyte Count of the given blood sample. (5 Hours)

- 3. To perform Differential Leukocyte Count of the given blood sample. (5 Hous)
- 4. To separate serum from the blood sample (demonstration). (5 Hours)
- 5. To perform immunodiffusion by Ouchterlony method. (10 Hours)
- 6. To perform DOT ELISA. (10 Hours)
- 7. To perform immunodiffusion by radial method. (10 Hours)
- 8. Demonstration of Phagocytosis. (10 Hours)

Text Book(s)

1. Immunology Lab Manual by Wilmore Weberly, 2015

2. Immunology methods manual - The comprehensive source book by Lefkovits. ,1996

3. Manual of clinical laboratory immunology by Rose NR,2002

5. Laboratory Immunology by BradshawLJ.1997

Reference books

Owen, J.A.; Punt, J.; Kuby, J.; Stranford, S.A. Kuby immunology. W.H. Freeman: 2013.

Modes of Examination: Assignment/Quiz/Project/Presentation/Written Exam

Examination Scheme:

Components	Internal	Attendance	Mid Term	End Term
Weightage (%)	30	10	20	40

Relationship between the Course Outcomes (COs) and Program Outcomes (POs)

	Mapping between COs and POs				
	Course Outcomes (COs)	Mapped Program Outcomes			
CO1	Evaluate different antigen-antibody interactions.	PO1, PO2, PO3,PO5			
CO2	identify different components of immune system in human system	PO2, PO3, PO5			
CO3	Utilize different immunological techniques for research and clinical purposes.	PO2, PO4, PO5, PO7,PO8			
CO4	Estimate and compare amount of antigen/antibody present in different samples	PO2, PO5, PO6,PO7, PO8			
CO5	Assess different host pathogen interactions.	PO2, PO4, PO5,PO7, PO8			

BIC12021	Course Code	
Immunology lab(practical)	Course Title	
1	PO1	Fundamental Knowledge
3	PO2	Critical thinking
3	PO3	Skills
2	PO4	Technical Knowledge
3	PO5	Logical Thinking
	PO6	Problem identification ability
ω	PO7	Analytical Knowledge
2	PO8	Career goals
ı	PO9	Team Work
	PO10	Sustainable Development to environment
ı	PO11	Development to society
	PO12	Development to humanity

1=weakly mapped

2= moderately mapped 3=strongly mapped

Model Question Paper

Nar	ne:	NDOWAJ	
Enr	olment No:	ADAMA UNIVERSIT	AS Y
Cou	Irse: BIC12021–IMMUNOLOGY LAB (PRACTICAL)		
	gram:B.Sc. Biochemistry	Time: 031	Hrs.
Sen	nester:Even 2020-21	Max. Ma	rks:40
Inst	tructions:		
	wer the following questions"		
	CTION A		
1.	Summarize the principle ABObloodgrouping. (Un)	10	CO1
2.	Illustrate the procedure for Giemsa staining for the given	10	CO1, CO2
	blood sample/s and evaluate the results.(Cr)		
	(Practical skill- 5, Method accuracy -5)		
SEC	CTION B		
6.	Lab note book (U/An/Ap/R/Ev)	10	CO1, CO2,
			CO3, CO4.
			CO5
7.	Viva-Voce (U/An/Ap/R/Ev)	10	CO1, CO2,
			CO3, CO4.
			CO5

BIC12023	MEMBRANE BIOLOGY AND	L	Τ	Р	C	
	BIOENERGETICS LAB (PRACTICAL)					
Version 1.0	Contact Hours - 45	0	0	3	2	
Pre-requisites/Exposure	BASIC KNOWLEDGE OF MEMBRANE BIOLOGY AND BIOENERGETICS THEORY PAPER OF B.SC. LEVEL					
Co-requisites	-					

Course Objectives

1. To provide students with hands-on training in the field of membranebiology.

2. Students will need to become proficient with different practical applications of membrane biology.

CourseOutcomes

On completion of this course, the students will be able to

- CO1. Explain the basic principles of membrane biology and its structural aspects.
- CO2. Develop fundamental knowledge about micelle formation and their properties.
- CO3. Comprehend different assay systems of markerenzymes.
- CO4. Build concept about modern tools like TLC, conductometryetc.

CO5. Utilize the knowledge of membrane biology to understand important physiological processes and organelles.

Catalog Description

The core course "membrane biology and bioenergetics lab" is a practical paper which has been designed to provide the knowledge of different aspects membrane biology. It will provide understanding of important physiological processes and organelles. Students will be able to understand basic concepts TLC and other techniques and will practice hands-on all of them. They will also learn to compare and use these methods for practical purpose like CMC determination, marker enzyme assay etc. All the lectures will be devoted on discussions of basic theories and advanced topics, focusing on practical implementation of knowledge. Classes will be conducted by lecture as well as power point presentation, audio visual virtual lab session as per requirement. The tutorials will familiarize the students with practical problem-solving techniquesled by the course coordinator. Students will strongly grab the basic concepts of the

subject via exercise and discussions with the coordinator.

Course Content

MEMBRANE BIOLOGY AND BIOENERGETICS LAB

1. Determination of CMC of a detergent. (10 Hours)

- 2. Effect of temperature on the permeability of a cell. (5 Hous)
- 3. Effect of organic solvent concentration on the permeability of a cell. (5 Hous)
- 4. Study of Osmosis. (5 Hous)
- 5. Isolation of RBC Membrane. (5 Hous)
- 6. Egg Lab: Study of Tonicity. (5 Hous)
- 7. Dialysis tube Lab. (5 Hous)
- 8. Liposome Preparation using Phospholipid.(10 Hours)

SUGGESTED READINGS

1. Introduction to Experimental Biophysics: Biological Methods for Physical Scientists: Volume 1& 2 (Foundations of Biochemistry and Biophysics). Jay L. Nadeau; CBCPress.

2. Textbook of Biochemistry with Clinical Correlations (2011) 7thed., Devlin, T.M., John Wiley & Sons, Inc. (New Jersey), ISBN:978-0-470-28173-4.

3.Biochemistry (2012) 7thed., Berg, J.M., Tymoczko, J.L. and Stryer L., W.H. Freeman and Company (New York), ISBN:10:1-4292-2936-5,ISBN:13:978-1-4292-2936-4.

Modes of Evaluation: Quiz/Assignment/ presentation/ extempore/ Written Examination Examination Scheme:

Components	Mid Term	Attendance	Class Assessment	End Term
Weightage (%)	20	10	30	40

lationship between the Course Outcomes (COs) and Program Outcomes (POs)

Mapping between COs and Pos					
	Course Outcomes (COs)	Mapped Program			

		Outcomes
CO1	Explain the basic principles of membrane biology and its structural aspects.	PO1, PO2, PO3
CO2	Develop fundamental knowledge about micelle formation and their properties.	PO1, PO10, PO11
CO3	Comprehend different assay systems of marker enzymes.	PO1, PO2, PO3, PO4, PO8
CO4	Build their concept on modern tools like TLC, conductometryetc.	PO1, PO3. PO6, PO8
CO5	Utilize the knowledge of membrane biology to understand important physiological processes and organelles.	PO1, PO4, PO8,

Course Code	Course Title	Fundamental Knowledge	Critical Thinking	Skill BO3	DA Technical Knowledge	Dd Logical Thinking Ability	Problem Identification	Analytical Knowledge	Career Goals	60d Gam Work	dSustainable Development toOEnvironment	Development to Society	. Development to Humanity
BIC12023	MEMBRANE BIOLOGY AND BIOENERGETICS LAB (PRACTICAL)	3	2	3	2	_	1	_	3	1	1	1	-

1=weakly mapped

2= moderately mapped

3=strongly mapped

Model Question Paper

Name:

Enrolment No:

Course: BIC12023– MEMBRANE BIOLOGY AND BIOENERGETICS LAB (PRACTICAL)

Program:B.Sc.Biochemistry Semester:Odd 2019-20 Time: 03Hrs. Max. Marks:40

Instructions:

Attempt any **two** questions from **Section A** (each carrying 10 marks); **Section B** is Compulsory (carrying 10 marks).

Section A (Attemptany Two)						
1.	a) Outline the principle of micelle formation.(U) b) Determine the effect of temperature on a membrane.(Ap)	4 6	CO1 CO2			
2.	 a) Explain the basic theory d LC.(U) b) Determine the CMC of a detergent.(Ap) 	4 6	CO3 CO4			
3.	a) Define the principle behind ion- exchange chromatography.(Re) b) Demonstrate the O ₂ productionin hydrilla with a simple experiment.(Ap)	4 6	CO3 CO2			
	SECTION B is compulsory					
4.	Viva-voce (U/An/Ap/R/Ev)	10	CO1 CO2 CO3 CO4 CO5			
5.	Practical copy(U/Ap/Ev)	10	CO1 CO2 CO3			

(a) these issues? (Ap)

BIC11024	Sec II Protein Purification Techniques (THEORY)	L	T	Р	C
Version 1.0	Contact Hours - 30	2	0	0	2
Pre-requisites/Exposure	Knowledge About Protein at B.Sc. Level	•			
Co-requisites					

Course Objectives

- 1. To provide students basic idea about different column purification techniques used purifyproteins.
- 2.It will also provide in depth knowledge about which techniques should be used fpurification based on the nature ofproteins.
- 3. To differentiate between different methodologies used for proteinpurification.
- 4. To provide students different ways of identifying proteins in a mixture of proteinlysate.

Course Outcomes

On completion of this course, the students will be able to:

- 1. **Define** the fundamental biochemical reaction used in different protein purification techniques.
- 2. Identify the appropriate purification method based on nature of theprotein.
- 3. **Develop** different methods for sample preparation that will be used forpurification.
- 4. Utilize the electrophoresis techniques to identifyprotein.
- 5. **Identify** a particular protein from a heterogenous mixture ofproteins.

Catalog Description

The core-course of 'Protein purification Techniques' will help to understand fundamental biochemical reaction used in different protein purification techniques. This course includes comprehensive approach through studying different biochemical reactions that are used to determinedifferentmethodsforsamplepreparationthatwillbeusedforpurification.Furthermore, the implication the electrophoresis techniques to identify protein will also be illuminated. All the lectureswillbedevotedondiscussionsofbasictheoriesandadvancedtopics,focusingonpractical

implementation of knowledge. Classes will be conducted by lecture as well as power point presentation, audio visual virtual lab session as per requirement. The tutorials will enable the students with problem-solving ability led by the course coordinator. Students will perceive the basic concepts of the subject via exercise and discussions with the coordinator.

Course Content

SEC-2 : PROTEIN PURIFICATION TECHNIQUES

1. Purification and characterization of a protein from a complex mixture (nativeor heterologously expressed) involving the followingmethods/techniques

Exercises:

i. Preparation of the sample.[10 LectureHours]
ii. Ion-exchange chromatography. [10 LectureHor]
iii. Gel filtration chromatography. [10 Lecture Hor] iv. Affinity chromatography. [10 LectureHours]
v. Electrophoresis. [10 Lecture Hours]

2. Demonstration of High-Performance Liquid Chromatography (HPLC) [10 Lecture Hours]

SUGGESTED READINGS

- 2.Physical Biochemistry: Principles and Applications (2010) 2nded., Sheehan, D., Wiley Blackwell (West Sussex), ISBN:978-0-470-85602-4 /ISBN:978-0-470-85603-1.
- 3. Physical Biochemistry: Applications to Biochemistry and Molecular Biology (1982)2nd ed., Freifelder, D., W.H. Freeman and Company (New York), ISBN:0-7167-1315-2 / ISBN:0-7167-1444-2.
- 4. An Introduction to Practical Biochemistry (1998) 3rded., Plummer D. T., Tata McGrawHill Education Pvt. Ltd. (New Delhi), ISBN:13: 978-0-07-099487-4 / ISBN:10: 0-07-099487-0.

Modes of Evaluation: Quiz/Assignment/ presentation/ extempore/ Written Examination Examination Scheme:

Components	Mid Term	Attendance	Class Assessment	End Term
Weightage (%)	20	10	30	40

Relationship between the Course Outcomes (COs) and Program Outcomes (POs)

	Mapping between COs and POs	
	Course Outcomes (COs)	Mapped Program Outcomes
CO1	Define the fundamental biochemical reaction used in different protein purification techniques.	PO1,PO5
CO2	Identify the appropriate purification method based on nature of the protein.	PO1, PO2,PO7
CO3	Develop different methods for sample preparation that will be used for purification.	PO1, PO2, PO3,PO5
CO4	Utilize the electrophoresis techniques to identify protein.	PO1, PO2, PO4, PO7
C05	Identify a particular protein from a heterogenous mixture of proteins.	PO3, PO5, PO7,PO8, PO10

BIC110 24	Course Code	
Protein Purification Techniques(THE ORY)	Course Title	
ω	РО 1	Fundamental Knowledge
ω	РО 2	Critical Thinking
-	PO 3	Skill
2	PO 4	Technical Knowledge
3	PO 5	Logical Thinking Ability
ı	PO 6	Problem Identification
J	PO 7	Analytical Knowledge
1	PO 8	Career Goals
1	РО 9	Team Work
2	РО 10	Sustainable Development to Environment
1	РО 11	Development to Society
I	РО 12	. Development to Humanity

1=weakly mapped 2= moderately mapped 3=strongly mapped

Model Question Paper

Name:

Enrolment No:

Course: BIC11024–Protein Purification Technique (THEORY)Program:B.Sc. BiochemistryTime: 03Hrs.Semester:Even 2020-21Max. Marks:40

Instructions:

Attempt any **four** questions from **Section A** (each carrying 5 marks); any **two** questions from **Section B** (each carrying 10 marks).

SE	CTION A (Attempt any Four questions)		
1.	Define partition coefficient value of paper chromatography. How will you separate arginine and glutamic acid from their mixture by paper electrophoresis?(Re)	2+3	CO1
2.	What will be the order of elution of following proteins from Sephadex-G50 column: catalase (222 KD), α-chymotrypsin (21.6 KD), concanavalin B (42.5 KD), lipase (6.7 KD) and RNase A (12.6 KD)? Explain your answer.(Un)	2+3	CO2
3.	Distinguish between Anion exchange chromatography and Affinity Chromatography.(An)	5	CO3
4.	Why two different Tris buffers of pH 6.8 and 8.8 are used in native and SDS-PAGE? Identify the extra advantage of the usage of SDS in the polyacrylamide gel electrophoresis.(Re/Un)	2+3	CO4
5	How ammonium sulphate helps in salting out of a specific protein? What is the principle of isoelectric precipitation during protein purification? (Re/Un)	2+3	CO5
	SECTION B (Attempt any Two questions)		
6.	What is the major difference between polyacrylamide gel electrophoresis and gel filtration chromatography? Write down the significance of molecular exclusion limit of gel filtration chromatography. How will you confirm about the presence of amino acids in the thin layer chromatography plates?(An/Re)	4+4+2	CO2 CO4
7.	Pepsin is the name given toa mix of several digestive enzymes secreted (as larger precursorproteins) by glands that line the stomach. These glandsalso secrete hydrochloric acid, which dissolves the particulatematter in food, allowing pepsin to enzymatically cleave individualprotein molecules. The resulting mixture of food, HCl,and digestive enzymes is known as chyme and has a pH near 1.5. What pI would you predict for the pepsin proteins? What functionalgroups must be present to confer this pI on pepsin? Which amino acids in the proteins would contribute such groups?(Re/Un/An)	2+4+4	CO1 CO2

8.	Histones are proteinsfound in eukaryotic cell nuclei, tightly bound to DNA, which has many phosphate groups. The pI of histones is veryhigh, about 10.8. Which amino acid residues must be present inrelatively large numbers in histones? Identify the way through which these residues contribute to the strong binding of histonestoDNA? (Re/Un)	5+5	CO1 CO2
9	A protein has a molecularmass of 400 kDa when measured by gel filtration. Whensubjected to gel electrophoresis in thepresence of sodium dodecylsulfate (SDS), the protein gives three bands with molecularmasses of 180, 160, and 60 kDa. When electrophoresis is carriedout in the presence of SDS and dithiothreitol, three bands areagain formed, this time with molecular masses of 160, 90, and 60kDa. Determine the subunit composition of the protein. (An)	3+3+4	CO4 CO5

BIC 11025	Recombinant DNA technology	L	Т	Р	С
Version 1.0	Contact Hours: 60	2	0	0	2
Pre-requisites/Exposure	Basic knowledge in Molecular Biology				
Co-requisites	-				

Course Objectives

- 1. To understand the Restriction and modification systems, ligation systems in bacteria and viruses and apply their appropriate use in recombinant DNAtechnology
- 2. To conceptualize about isolation of cloning vectors for prokaryotes and eukaryotes and summarize their appropriate use in recombinant DNAtechnology
- 3. To provide knowledge of PCR, DNA sequencing and choose their appropriate use in recombinant DNAtechnology
- 4. Able to understand recombinant DNA technology in gene expression through bue white screening
- 5. To **demonstrate** and apply RDT in Recombinant vaccines Gene therapy, agriculture- plant genetic engineering, herbicide resistant crops etc.

Course Outcomes

On completion of this course, the students will be able to

CO1	demonstrate the Restriction and		d ownly their
	systems, ligation systems in bact appropriate use in recombinant D		id apply their
CO2	develop the concept about isolati		tors for prokaryotes
	and eukaryotesand applytheir	appropriate	use in recombinant
	DNAtechnology.		
CO3	demonstrate PCR, DNA sequer	ncing and choose	
	their appropriate use in recombin	ant DNAtechnolo	gy.
CO4	apply recombinant DNA technol	ogy ingene	
	expression through blue-whitesci	reening.	
CO5	demonstrate and apply RDT in	-	
	vaccines Gene therapy, agricultu	re - plant genetic e	engineering, herbicide
	resistant crops etc.		2 2

Catalog Description

Construction Management is the overall planning, coordination and control of a project from inceptiontocompletionaimedatmeetingaclient's requirements in order to produce a functionally and financially viable project. This course includes specific activities like defining the responsibilities and management structure of the project management team, planning methods and implementing it in project controls (time and cost), defining roles and

responsibilities of personnel in the organization, equipments and safety measures in construction. All the lectures will be devoted on discussions of basic theories and advanced topics, focusing on practical implementation of knowledge. Classes will be conducted by lecture as well as power pointpresentation, audiovisual virtual labsession as per requirement. The tutorial swill familiarize thestudentswithpracticalproblem-solvingtechniquesledbythecoursecoordinator.Studentswill strongly grab the basic concepts of the subject via exercise and discussions with the coordinator.

CourseContent

UNIT 1 Introduction to Genetic Engineering

Milestones in genetic engineering and biotechnology

UNIT 2 Molecular Cloning- Tools and Strategies Restriction modification Cloning Tools; systems: Types I, Π and III. Mode of action. applications Type Π restriction engineering nomenclature, of in genetic enzymes Terminal DNA modifying and their applications: DNA polymerases. enzymes deoxynucleotidyl transferase, kinases and phosphatases, and DNA ligases Cloning Vectors: Definition Properties; Plasmid series; and vectors: pBR and pUC Cosmids, Bacteriophage lambda and M13 based vectors; Phagemids, BACs. YACs; of E.coli promoter-based Use linkers and adaptors; Expression vectors: and T7 lac vectors, yeast YIp, YEp and YCp vectors, Baculovirus based vectors. mammalian SV40-based expression vectors

UNIT 3 Methods in Molecular Cloning

Transformation of DNA: Chemical method, Electroporation, Gene delivery: Microinjection, electroporation, biolistic method (gene gun), liposome and viral mediated delivery, Agrobacterium (Ti plasmid)- mediated delivery; DNA, RNA and Protein analysis: Agarose gel electrophoresis, PAGE, Southern and Northern SDS-PAGE blotting dot blot, DNA techniques, microarray analysis, and Western blotting.

UNIT4 DNA Amplification and DNA sequencing

PCR: Basics of PCR, RT-PCR, **Real-Time** PCR; Sanger's method Dideoxy and method of walking DNA Sequencing: traditional and automated sequencing; Primer and shotgun sequencing

UNIT 5 Construction and Screening of Genomic and cDNA libraries 10 hrs cDNA libraries: Preparation and Genomic and uses. Screening of libraries: Colony hybridization and colony PCR, Chromosome walking and chromosome jumping

UNIT 6 Applications of Recombinant DNA Technology Products of recombinant technology: Products DNA of human therapeutic interest antisense molecules. Bt transgenic brinjal. insulin. hGH. cotton, Gene therapy, recombinant vaccines, protein engineering and site directed mutagenesis.

TEXT BOOKS

1. Brown TA. (2010). Gene Cloning and DNA Analysis.6th edition. Blackwell Publishing, Oxford,U.K.

12 hrs

2hrs

12 hrs

12hrs

12 hrs

1. Primrose SB and Twyman RM. (2006). Principles of Gene Manipulation and Genomics, 7th edition.Blackwell Publishing, Oxford, U.K.

2. Clark DP and Pazdernik NJ. (2009). Biotechnology: Applying the Genetic Revolution. Elsevier Academic Press, USA

3. Glick, B.R.; Pasternak, J.J.; Patten, C.L. (2010). Molecular biotechnology: Principles and applications of recombinant DNA. ASM Press.

Modes of Evaluation: Quiz/Assignment/ presentation/ extempore/ Written Examination Examination Scheme:

Components	Mid Term	Attendance	Class Assessment	End Term
Weightage (%)	20	10	30	40

Relationship between the Course Outcomes (COs) and Program Outcomes (POs)

	Mapping between COs and Pos		
	Course Outcomes (COs)	Mapped Program Outcomes	
C01	Demonstrate the Restriction and modification systems, ligation systems in bacteria and viruses and apply their appropriate use in recombinant DNA technology	PO1, PO2	

CO2	Develop the concept about isolation of cloning vectors for prokaryotes and eukaryotes and apply their appropriate use in recombinant DNA technology	PO1,PO2, PO3,
CO3	Demonstrate PCR, DNA sequencing and choose their appropriate use in recombinant DNA technology	PO1, PO2, PO3, PO4
CO4	Apply recombinant DNA technology in gene expression through blue-white screening	PO1, PO5, PO10
CO5	Demonstrate and apply RDT in Recombinant vaccines Gene therapy, agriculture - plant genetic engineering, herbicide resistant crops etc	PO1, PO6, PO8

SDS11507	Elective Statistics II	L	Τ	P	С
Version 1.0	Contact Hours -90	5	1	0	6
Pre-requisites/Exposure	Statistics I				
Co-requisites					

Course Objectives:

This course aims to build up the advanced knowledge on the basic statistics. Here students will learn more tools and techniques which are useful for analyzing economic issues in real life. The difference between population and sample, why sampling is required for any study, has to be understoodclearlybeforeonedelvesintostatisticalanalysis.Inthispaperstudentswillgetanidea of sampling theory and techniques, sampling distribution and is a laso learn business indexnumbers.

Course Outcomes

On completion of this course, the students will be able to

- CO1. Develop the knowledge basic terminologies of sampling, hypothesistesting.
- CO2. **Illustrate** sampling distribution of statistics and test of significance for large sample and small

sample.

- CO3. Explain severalmethodsofestimationtoestimatepopulationparameters.
- CO4. Classify several types of index numbers to measure relativechanges.

Catalogoue Description:

Thiscourse introduces basic concepts and techniques statistical theory. Itemphasizes the intuitive logic that underlie the theory and techniques, and valid interpretation of the results obtained using the techniques.

This course contains sampling techniques, estimation, test of hypothesis and index numbers. All the lectures will be devoted on discussions of basic theories and advanced topics, focusing on practical implementation of knowledge. Classes will be conducted by lecture as well as power pointpresentation, audiovisual virtual labsession as percequirement. The tutorial swill familiarize the students with practical problem-solving techniques led by the course coordinator. Students will strongly grab the basic concepts of the subject via exercise and discussions with the coordinator.

Course Content:

Unit-I

(23 LectureHours)

Definitionsofrandomsample,parameterandstatistic,nullandalternativehypotheses,simpleand composite hypotheses, level of significance and probabilities of Type I and Type II errors, power of a test and critical region. Sampling distribution of a statistic, sampling distribution of sample mean, standard error of samplemean.

Unit-II

Large sample tests for single mean, difference of means, standard deviation and difference of standard deviations. Sampling distributions of chi-sq, t and F: definitions, properties and relationships between them. Tests of Significance based on Chi-square (goodness of fit and independenceofattributes),tdistributionandF-distributionusingclassicalandp-valueapproach.

Unit-III

Methods of estimation: maximum likelihood, least squares and minimum variance, statement of Rao-Blackwell theorem and Lehmann-Schaffer theorem. Properties of maximum likelihood estimators (illustration). Interval Estimation: confidence intervals for the parameters of normal distribution, confidence intervals for difference of mean and for ratio of variances.

Unit-IV

(11 LectureHours) Basicconceptofindexnumbers-simpleandweightedindexnumbers-conceptofweights-types index numbers - Business index number - CPT, WPI, Sensex, Niffy, ProductionIndex.

Text book

T1.A.M.Goon, M.K.Guptaand B.Dasgupta (2003): Anoutline of Statistical Theory (Vol.I), 4th Ed., World Press,Kolkata. T2. S.C. Gupta and V.K. Kapoor (2007): Fundamentals of Mathematical Statistics, 11th Ed., Sultan Chand and Sons.

Reference book

R1. V.K. Rohtagi and A.K. Md. E. Saleh (2009): An Introduction to Probability and Statistics, 2nd Edition, John Wiley and Sons.

Modes of Examination: Assignment/Quiz/Project/Presentation/Written Exam

Examination Scheme:

Components	Mid term	Attendanc	Class	End Term
		е	Assessment	
Weightage (%)	20	10	30	40

(28 Lecturehours)

(28 LectureHours)

of

Mapping between COs, POs

	Course Outcomes (COs)	Mapped POs
CO-1	Develop the knowledge basic terminologies of sampling, hypothesis testing.	PO2, PO5
CO-2	Illustrate sampling distribution of statistics and test of significance for large sample and small sample.	PO2, PO5
CO-3	Explain several methods of estimation to estimate population parameters.	PO5
CO-4	Classify several types of index numbers to measure relative changes.	PO2, PO5

Fundamental Knowledge Critical Thinking Skill Skill Technical Knowledge Logical Thinking Ability Logical Thinking Ability Problem Identification Analytical Knowledge Career Goals Team Work Team Work Ustainable Development to Environment Sustainable Development to Environment Development to Humanity	
Fundamental Knowledge Critical Thinking Skill Technical Knowledge Technical Knowledge Logical Thinking Ability Logical Thinking Ability Deolem Identification Problem Identification Problem Identification Technical Knowledge Career Goals Tean Work Tean Work Ueren Development to Environment Development to Society . Development to Humanity	
Critical Thinking Skill Skill Technical Knowledge Logical Thinking Ability Logical Thinking Ability Deolem Identification Problem Identif	Fundamental Knowledge
Skill Technical Knowledge Logical Thinking Ability Logical Thinking Ability Problem Identification Analytical Knowledge Analytical Knowledge Career Goals Career Coals Career Career Caree	Critical Thinking
Technical Knowledge Logical Thinking Ability Problem Identification Analytical Knowledge Analytical Knowledge Career Goals Career Carear Career Carear Career Carear Carear Carear Carear Carear Carear	Skill
Logical Thinking Ability Problem Identification Analytical Knowledge Career Goals Career Goals Team Work Team Work Sustainable Development to Environment Sustainable Development to Environment Development to Society . Development to Humanity	Technical Knowledge
Problem Identification Analytical Knowledge Career Goals Team Work Team Work Sustainable Development to Environment Sustainable Development to Environment Development to Society . Development to Humanity	Logical Thinking Ability
Analytical Knowledge Career Goals Team Work Sustainable Development to Environment Development to Society Development to Humanity	Problem Identification
Career Goals Team Work Sustainable Development to Environment Development to Society . Development to Humanity	Analytical Knowledge
Team Work Sustainable Development to Environment Development to Society . Development to Humanity	Career Goals
Sustainable Development to Environment Development to Society . Development to Humanity	Team Work
Development to Society . Development to Humanity	Sustainable Development to Environment
. Development to Humanity	Development to Society
	. Development to Humanity

Course Code	Course Title	PO1	PO 2	PO3	PO4	PO5	PO6	РО 7	PO8	PO9	PO1 0	PO1 1	PO12
SDS11 507	Electiv e Statisti cs II		3			3							

1=weakly mapped

2= moderately mapped

3=strongly mapped

Model Question Paper

Name:					
Enrolme	nt No:	ADAMAS UNIVERSITY PURSUE EXCELLENCE			
	Elective Statistics II				
		Гіте: 03Hrs. Max. Marks:40			
Instructi			a from Soution D		
	any three questions from Section A (each carrying 5 marks); a rying 10 marks).	ny i wo Questio	is from Section B		
Section A (Answerall)					
1.	Find the distribution of sample mean taken from a population which follows normal distribution. (R)	5	CO1		
2.	A drug given to each of the 12 persons resulted in the				
	following changes in the blood pressure from normal				
	-3,2,8,-1,3,0,7,-2,1, 5,0,4. Explain whether the	5	CO2		
	differences is significant or not. Given, $t_{11,0.05} = 2.228$.				
	(U)				
3.	Show that if θ s an unbiased estimator of θ , then it does	5	CO3		
	notimply that $\sqrt{\theta}$ also an unbiased estimator of $\sqrt{\theta}$. (U)	5	COS		

4.	State and explain Rao-Blackwell theorem and Lehmann-Scheffe theorem. (U)	5	CO3
	SECTION B (Attempt any Two Quest	ions)	
5.	Find the MLE of the mean of an exponential distribution? (U)	10	CO3
6.	a) State and explain Type-I error and Type-II error.(R) b) A random sample of size 3 is drawn without replacement from a population of size 5 having units 3,6, 7, 8, 10. Verify that the sample mean is an unbiased estimator of population mean, And show that thesample variance of sample mean is $\sigma \times \frac{N-n}{N-1}$, where σ^2 is the population variance. (U)	4 6	CO1 CO3
7.	 a) A sample of 1600 members is found to have a mean of 5.7. Explain it could be reasonably regarded as a simple sample from a large population whose mean is 4.5 and standard deviation is 2.8? (U) b) Explain business index numbers WPI and Sensex. (U) 	6 4	CO2 CO4

CHM 11153	Elective Chemistry II	L	Т	Р	С	
Version 1.0	Contact Hour: 60	3	1	0	4	
Pre-requisites/Exposure	Pre-requisites/ExposurePhysics and Chemistry of class 12 or 10+2 level					
Co-requisitesPartial differentiation, model making, graph plotting						

Course Objectives

- 1.To introduce important concepts required in the field of the course advanced elective chemistry. This course gives students a thorough understanding regarding fundamental knowledge of various branches of chemistry.
- 2. To introduce clear understanding of regarding the stabilization of colloidal systems athow solution properties are affected with different dissolutions.
- 3. To impart the basic notions of chemical equilibrium.
- 4. To impart detailed descriptions of basic properties of organic molecules and their related reaction mechanism which play major roles in everyday lifecycle.

5. To learn the elementary concepts of acid-base chemistry required for daily life chemistry. 6. Tounderstandthemajorroleofinorganiccomplexes inliving organisms which are way

essential concepts in the course curriculum of some disciplines.

7. To identify important tools of different spectroscopic methods required in structureanalysis of molecules.

Course Outcomes for CHM 11153

On completion of this course, the students will be able to

CO-1: Explain fundamental principles and theories for stabilisation/destabilisation of colloidal systems.

CO- 2: Utilize LeChâtelier's Principle, how the equilibrium quantities of reactants and products are shifted by changes in the parameters of the chemical reactions.

CO-3: Develop the knowledge about the properties of solutions that depends on the number of dissolved particles in solution, but not on the identities of the solutes.

CO-4: Explain reasonable mechanism for a chemical reaction.

CO-5: Develop the acid-base concept in aqueous and non-aqueous media and reactions in non-aqueous media.

CO-6: Infer about the fundamental tasks performed by inorganic elements in living organisms as well as the related methods.

CO-7 :Identify the structure of unknown/new compounds with the help of different spectroscopic methods like UV-Visible, IR and NMR spectroscopic Technique.

Catalogoue Description:

This course gives a detailed understanding of the basics of physical, organic, bioinorganic and spectroscopic knowledge required in other disciplines. This course will include expert instructors who will introduce the importance of chemical equilibrium, property of colloidalstates, preliminary concepts of organic chemistry, stereochemistry and some and their various mechanisms, basic bioinorganic chemistry and spectroscopic methods required in analysing chemical structures. All the lectures will be devoted on discussions of lementaryconcepts and cutting-edge topics, focusing on practical implementation of knowledge. Instructors will conduct theory classes by taking lecture as well as power point presentations, audio visual virtual lab sessions as perrequirement of the course. After finishing this course, students from different disciplines will strongly grasp the basic concepts of the subject via exercise anddiscussions with the coordinator.

Course Content:

Physical Chemistry-II

Unit-I: Colloids (5L)

Colloids and crystalloids; classification of colloids; Preparation and purification of colloids; Properties of colloids: Brownian motion, peptization, dialysis, Tyndal effect and its applications. Protecting colloids, Gold number, Isoelectric points, Coagulation of colloids by electrolytes, Schulze-Hardy rule

Unit II: Chemical and Ionic equilibrium (10 L)

Concept of Gibbs Free Energy; Criteria for thermodynamic equilibrium and spontaneity of a process; Chemical equilibria of homogeneous and heterogeneous systems, Derivation of expression of equilibrium constants; Temperature, pressure and concentration dependence of equilibrium constants (Kp, K. Kx); Le Chatelier's principle of dynamic equilibrium.Strong, moderate and weak electrolytes, degree of ionization, factors affecting degree of ionization, ionization constant and ionic product of water. Ionization of weak acids and bases, pH scale, common ion effect; dissociation constants of mono-, di-and triprotic acids (exact treatment).Concept of salt hydrolysis; Buffer solution and buffer capacity.

Organic Chemistry I

Unit-I:

Fundamentals of Organic ChemistryandStereochemistry:

Functionalgroup-basedclassificationandnomenclature;SourcesIoriginofdifferentcompounds; Concept of hybridization; resonance (including hyperconjugation); inductive effect; steric effect; steric inhibition of resonance. Orbital pictures of bonding (spa, sp², sp: C-C, C-N & C-Osystem).

Stereochemistry: Symmetry elements, Molecular chirality, Concept of Stereo Centre, Representation of molecules in Fischer projection, Concept of E/Z and Cis-Trans stereo-isomers.

Unit-II:

Mechanistic classification: ionic, radical and pericyclic; heterolytic and homolytic bond cleavage and bond formation; representation of mechanistic steps using formalism. Reactive intermediates: carbocations (cabenium and carbonium ions), Carbanions, Carbon radicals, Carbenes-structure using orbital picture, Electrophilic/nucleophilic behaviour, Stability, generation and fate (elementary idea); Nucleophilic and electrophilic substitution reaction (only spcentre); Introduction to Elimination reaction and its types.

Unit-III:

[7 LectureHours]

Basic Organic Reactions: (Addition, Substitution, Elimination, Rearrangement Reactions) Addition Reactions: Halogenations, Hydration, Hydrogenation, Epoxidation, Hydroxylation, Ozonolysis, electrophilic addition to diene; Hydroborationoxidation reaction; Radical addition: HBr addition, Birch Reduction. Nucleophilic addition to carbonyl group.

Substitution Reactions: SN 1, SN2, NGP, Elimination Reactions: El, E2, Elimination vs. Substitution, Rearrangement Reactions: Rearrangement to electron-deficient carbon: Wagner-Meerwein rearrangement, pinacol-pinacolon and related rearrangements, dienone-phenol.

Inorganic Chemistry-II:

Unit-I:

[7 LectureHours]

[3 LectureHours]

[5 LectureHours]

Acids-Bases and Redox: Bronsted- Lowry concept of acid-base reaction, solvated proton, types of acid-base reactions, levelling solvents, Lewis acid-base concept, Classification of Lewis acids, Hard and Soft Acids and Bases (HSAB) Application of HSAB principle. Theory of acid-base titration and significance of Acid-base indicators.Common ion effect ;Ion-electron method of balancing equation of redox reaction. Elementary idea on standard redox potentials with sign conventions; Nernst equation (without derivation);redoxindicators

Unit-II:

BioinorganicChemistry:

[8 LectureHours]

Elements of life: essential major, trace and ultra-trace elements; Basic chemical reactions in the biological systems and the role of metal ions (specially Na+, K+, Mg2+,Ca2+, Fe3+, 12+, Cu2+, R-, and Zn2+);Biological functions of haemoglobin and myoglobin.

Spectroscopy: [15 Lecture Hours]

Unit-I:

UV-Vis Spectra: Electronic transition, relative positions of k-max, Woodward's empirical rule; Labert-Beers Law.

Unit-II:

IR Spectra: Modes of molecular vibrations, application of Hooke's law, characteristic stretchingfrequencies and factors effecting stretching frequencies.

Unit-III:

NMR Spectra: Preliminary idea of NMR, Nuclear spin, NMR active nuclei, Equivalent and nonequivalent carbons and protons; Chemical shift 6; Shielding deshielding, Upfield and Downfield shifts.

Unit-IV:

Photochemistry: Fluorescence and phosphorescence; Quantum Yield; Jablonsky diagram

Reference Books:

Physical Chemistry:

- 1. D. A. Mcquarrie and J. D. Simon: Physical Chemistry A Molecular Approach
- 2. G. W. Castellan: Physical Chemistry
- 3. P. W. Atkins: Physical Chemistry

Organic Chemistry:

- 1.D. Nasipuri: Stereochemistry of organic compounds: Principles and Applications
- 2.P. Sykes: A Guide to Mechanism in Organic Chemistry

3. R. T. Morrison and R. N. Boyd: Organic Chemistry

Inorganic Chemistry

1. Bioinorganic Chemistry. Asim K. Das.

Spectroscopy.

2. Organic Spectroscopy. WilliamKemp.

Modes of Examination: Assignment/Quiz/Project/Presentation/Written Exam Examination Scheme:

Components	Mid term	Attendance	Class	End Term
			Assessment	
Weightage (%)	20	10	30	40

Relationship between the Course Outcomes (COs) with Program Outcomes (POs) and Program Educational Outcomes (PEOs)

Mapping between COs, POs and PEOs

CO-1	Explain fundamental principles and theories for stabilisation/destabilisation of colloidal systems.	PO1, PO2, PO4
CO- 2	Utilize LeChâtelier's Principle, how the equilibrium quantities of reactants and products are shifted by changes in the parameters of the chemical reactions.	PO2, PO6, PO9
CO-3	Develop the knowledge about the properties of solutions that depends on the number of dissolved particles in solution, but not on the identities of the solutes.	PO1, PO2, PO3
CO-4	Explain reasonable mechanism for a chemical reaction.	PO1, PO5
CO-5	Develop the acid-base concept in aqueous and non-aqueous media and reactions in non-aqueous media.	PO2, PO6
CO-6	Infer the fundamental tasks performed by inorganic elements in living organisms as well as the related methods.	PO1, PO2, PO5
CO-7	IOdentify the structure of unknown/new compounds with the help of different spectroscopic methods like UV-Visible, IR and NMR spectroscopic Technique.	PO2, PO9

CHM 11153	Course Code	
Elective Chemistry II	Course Title	
3	PO1	Fundamental Knowledge
3	PO2	Critical Thinking
1	PO3	Skill
1	PO4	Technical Knowledge
2	PO5	Logical Thinking Ability
2	90	Problem Identification
I	PO7	Analytical Knowledge
I	PO8	Career Goals
2	PO9	Team Work
1	PO9 PO10	Sustainable Development to Environment
ı	PO11	Development to Society
	PO12	. Development to Humanity

1=weakly mapped 2= moderately mapped 3=strongly mapped

Model Question Paper

	Name:		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	СО
	Enrolment No:		ADAMA UNIVERSITY	
	Course: Elective Chemistry II		Paralle Paralleland	
	Program: B.Sc.Biochemistry Time: 03Hrs. Max. Marks: 40			
	Semester: Even'2020-21			
1	a) Change 1-propene to 1-propanol and 2-propanol. b) Outline the mechanism and the rate law of E2reaction.	3+1	(Un/C r)	CO3
2	Distinguish between SN1 and SN2 reactions showing the mechanism of both. b) What are enantiomersanddiastereoisomers? Explain with examples.	3+4	(An)	CO3, CO4
3	a) What is configuration and conformation? Explain with examples. b) Explain the mechanism offormation of nitrobenzene from benzene.	1+2+2	(Re/A p)	CO3
4	Outline the properties of a stable colloidal solution. Is soap a colloid?	3	(Un)	CO1
5	Summarise the effects of temperature and pressure on a chemical equilibrium.	2+2	(Un)	CO2
6	Why is aniline a weaker base compared to methyl amine? What is optical rotation?	2+2	(Re)	CO3, CO4
7	Compare the structural differences between haemoglobin and myoglobin.	2	(An)	CO5
8	What is Bohr effect? Relate the functional differences of haemoglobin and cytochrome C.	2+3	(Re/ Un)	CO6
9	Outline Lambert-Beers law. Explain the required characteristics of a molecule to execute UV-Vis spectra.	2+3	(Un)	CO7
10	Why pyridine is more basic than aniline? Tell the required characteristics of a molecule to show chirality.	3+2	(Re)	CO4

Course Code CHM12154	Course Name	L	Т	Р	Credit			
	Elective Chemistry II lab		0	3	2			
Course Outcome	Course Outcome State	Course Outcome Statement						
Course Content	:							
2. Experime Experime a.] b. (To study the kinetics of inversion of sucrose using polarimeter. Experiment A: Detection of special elements (N, Cl, and S) in organic compounds. Experiment B: Solubility and Classification (solvents: H2O, dil. HCl, dil. NaOH) a. Experiment C: Detection of functional groups -NO2, -NH2, -COOH, carbonyl b. (-CHO, >C=O), -OH (phenolic) in solid organic compounds. 							
 P. Sykes: A 0 J. March: Ad I. L. Finar: C 		es and	Applic	cations	3			

CSE11643	Elective Computer Science II	L	T	Р	C
Version 1.0	Contact Hours:60	4	0	0	4
Pre-requisites/Exposure	Basics of computer knowledge				
Co-requisites					

Course Objectives

1. To understand the basic procedural programmingskills.

2. To apply the conditional constructs to solution of different problems.3.

To understand the iterative way ofprogramming.

4. To design solution to different problem scenarios using the programming constructs.

Course Outcomes

On completion of this course, the students will be able to

- CO1: develop the concept about a functional hierarchical code organization.
- CO2: define and manage data structures based on problem subject domain.
- CO3: experimentwith textual information, characters and strings.
- CO4: design algorithms to solve simple problems.
- CO5: demonstrate the ability to correct, test and debug Processing programs.

Catalog Description

This course introduces the students to the basics of programming skills. It familiarizes them with the procedural programming approach and design solutions to problems using conditional constructs, iterative programming and functions. They learn to create user-defined functions to solve different problem scenarios and grasp knowledge about string handling functions.

Course Content

Unit I:

8 Lecture Hours

Basics of C Programming: Characters used in C, Identifiers, Keywords, Data type & sizes, Constants & Variables, Different types of Operators, Standard Input/output functions.

Unit II:

8 Lecture Hours

Control Flow: Control Flow, if-else, switch-case, Loop Control Statements, for loop, while loop, do-while loop, nested loop, break, continue, goto label and exit() function.

Unit III:

Arrays: Definition, Single and Multidimensional Arrays, Representation of Arrays - Row Major Order, and Column Major Order, Application of arrays – searching and sorting, Sparse Matrices and their representations.

Unit IV:

9 Lecture Hours

15 Lecture Hours

String: Definition of a String, Declaration of a String, Initialization of a String, Various String Handling Functions with example.

Unit V:

10Lecture Hours

Pointers: Definition of Pointer, Declaration of Pointer, Operators used in Pointer, Pointer Arithmetic, Functions with Pointer.

UnitVI:

Functions: BasicConceptofFunction, DeclarationorPrototypeofFunction, TypesofFunctions, CallbyValue,CallbyReference,Recursion,TailRecursion.

Reference Books

List of Books:

1. "The C Programming Language", 2nd Edition, Brian W. Kernighan, Dennis M. Ritchie, PHI

2. "Schaum'sOutline of Programming with C", 2nd Edition, Byron S. Gottfried, McgrawHill

Education

3. "TheCompleteReference", 4thEditionbyHerbertSchildt, TataMcgrawHillEducation

Modes of Evaluation: Quiz/Assignment/ presentation/ extempore/ Written Examination **Examination Scheme:**

Components	Mid Term	Attendance	Class Assessment	End Term
Weightage (%)	20	10	30	40

10 lecturehours

	Mapping between COs and POs							
	Course Outcomes (COs)							
C01	Develop concept a functional hierarchical code organization.	PO5						
CO2	Define and manage data structures based on problem subject domain.	PO8,PO12						
CO3	Experiment with textual information, characters and strings.	PO8,PO5						
CO4	Design algorithms to solve simple problems.	PO5,PO8						
CO5	Demonstrate the ability to correct, test and debug Processing programs.	PO5						

Relationship between the Course Outcomes (COs) and Program Outcomes (POs)

		Fundamental Knowledge	Critical Thinking	Skills	Technical Knowledge	Logical Thinking	Problem identification ability	Analytical Knowledge	Career goals	Team Work	Sustainable Development to environment	Development to society	Development to humanity
Course Code	Course Title	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO10	PO1 1	PO1 2
CSE1164 3	Elective Compute r Science II	-	-	-	-	2	-	-	3	-	-	-	1

1 = weakly mapped

2 = moderately mapped 3 = strongly mapped

Model Question Paper

Name:

Enrolment No:

END-SEMESTER EXAMINATION (DECEMBER 2019)

(Academic Session: 2019 – 20, Semester Term: Aug. 2019 – Dec. 2019)

Name of the Program:B.Sc.Biochemistry PAPER TITLE: Elective ComputerScienceII MaximumMarks:40 Instructions:

Semester: Even'2020-21 PAPER CODE: CSE11643 Time duration: 3 hours

Attempt any three questions from Section A (each carrying 4 marks); any four from

Section B (each carrying 7 marks).

	SECTION A (Attempt any Three questions)		
1	What is a data type? Explain about any two data types.(Re/Un)	2 2	CO1
2	Explain nested if else statement with example.(Un)	4	CO2
3	Explain a C program to display the reverse of a number. What is ternary operator?(Re/Un))	3 1	CO4
4	What is the use of break statement? Explain with a suitable example(Re/Un).	2 2	CO2
	SECTION B (Attempt any Four questions)		
5	a) Illustrate a C program to find the largest among three numbers.b) What is string? What is the use of strlen() function?(Re/Un)	3 2 2	CO3
6	a)What is a pointer? Explain with suitable example.b)ElaboratePointer arithmetic.(Re/Un/Cr)	3 2 2	CO3
7	 a) Distinguish between row major and column major array representation. b) Outline a C program to swap two variables without using third variable. c) Outline a C program to print the elements of a one-dimensional array. (An/Un) 	2 3 2	CO3, CO5
8	 a) Outline a C program to search for an element in a givenarray. b) What is a two-dimensional array? Give anexample. c) What is afunction?(Re/Un) 	3 2 2	CO4, CO5
9	 a) Distinguish between call by value and call by reference method of passing theparameters. b) Construct a C program to check whether a number is palindrome by using user-defined function.(An/Ap) 	3 4	CO1, CO2, CO5

CSE12644	Elective computer science II Lab	L	Т	Р	C		
Version 1.0	Contact Hours: 45 0 0 3						
Pre-requisites/Exposure	Basics knowledge about Elective Computer Science II Theory Paper						
Co-requisites							

Course Objectives

1. To understand the basic procedural programmingskills.

2. To apply the conditional constructs to solution of different problems. 3.

To understand the iterative way ofprogramming.

4. To design solution to different problem scenarios using the programmingconstructs.

Course Outcomes

On completion of this course, the students will be able to

CO1: identify situations where computational methods and computers would be useful.

CO2: solve a computational problem, identify and abstract the programming task involved.

CO3: formulate the programming tasks using techniques learned and write pseudo-code.

CO4: choose the right data representation form at sbased on the requirements of the problem.

CO5:outlinetheprogramonacomputer,edit,compile,debug, correct,recompileandrunit.

CO6: identify tasks in which the numerical techniques learned are applicable and apply them to write programs, and hence use computers effectively to solve the task.

Catalog Description

This course introduces the students to the basics of programming skills. It familiarizes them with the procedural programming approach and design solutions to problems using conditional constructs, iterative programming and functions. They learn to create user-defined functions to solve different problem scenarios and grasp knowledge about string handling functions.

Course Content

List of experiments:

1. Introduction to C Programming [10 lecturehours]

2.C program to implement different aspects of Control Flow[10 lecture hours]3.

C program to implement different aspects of Arrays[10 lecturehours]

- 4. C program to implement different aspects of String[10 lecture hours]
- 5. C program to implement different aspects of Pointers[10 lecturehous]
- 6. C program to implement different aspects of Functions[10 lecture hours]

Reference Books List of Books:

- 1. "TheCProgrammingLanguage",2ndEdition, BrianW.Kernighan,DennisM. Ritchie,PHI
- 2. "Schaum'sOutline of Programming with C", 2nd Edition, Byron S. Gottfried, McgrawHill

Education

3. "TheCompleteReference",4thEdition byHerbertSchildt, TataMcgrawHillEducation

Modes of Evaluation: Quiz/Assignment/ presentation/ extempore/ Written ExaminationExamination Scheme:

Components	Mid Term	Attendance	Class Assessment	End Term
Weightage (%)	20	10	30	40

Relationship between the Course Outcomes (COs) and Program Outcomes (POs)

	Mapping between COs and POs									
	Course Outcomes (COs)	Mapped Program Outcomes								
CO1	Identify situations where computational methods and computers would be useful.	PO1,PO3,PO5								
CO2	Solve a computational problem, identify and abstract the programming task involved.	PO3,PO5,PO7								
CO3	Formulate the programming tasks using techniques learned and write pseudo-code.	PO1,PO3,PO5								
CO4	Choose the right data representation formats based on the requirements of the problem.	PO1,PO3,PO5								
CO5	Outline the program on a computer, edit, compile,	PO1,PO3,PO5								

	debug, correct, recompile and run it.	
CO6	Identify tasks in which the numerical techniques learned are applicable and apply them to write programs, and hence use computers effectively to solve the task.	PO3,PO5,PO7,PO8

		Fundamental Knowledge	Critical Thinking	Skills	Technical Knowledge	Logical Thinking	Problem identification ability	Analytical Knowledge	Career goals	Team Work	Sustainable Development to environment	Development to society	Development to humanity
Course Code	Course Title	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CSE12644	Elective Computer Science II Lab	3	-	3	-	3	-	2	2	-	-	-	-

1 = weakly mapped

2 = moderately mapped

3 = strongly mapped

Model Question Paper

Name:

Enrolment No:

END-SEMESTER EXAMINATION (DECEMBER 2019)

(Academic Session: 2019 – 20, Semester Term: Aug. 2019 – Dec. 2019)

Name of theProgram:B.Sc.Biotechnology PAPER TITLE: Elective computer scienceIILab CSE12644MaximumMarks:40 Instructions: Semester: Even 2020-21 PAPER CODE: Time duration: 3 hours

Attempt any two questions from Section A (each carrying 10 marks); Section B is

Compulsory (carrying 10 marks).

	Section A (Attempt any Two)		
1	a. To change the temperature from Celsius toFahrenheit. b. To predict whether a number is odd oreven. c. To show the elements of an 1D array.(Un/Cr)	3 3 4	CO3,C O5,CO 6,CO1, CO2
2	a. To print the reverse of anumber.b. To evaluate whether a string is palindrome ornot.c. To swap two variables using third variable(Ev)	3 3 4	CO3,C O5,CO 6,CO1, CO2
3	a. To print the largest among threenumbers. b. To find for a given element in anarray. c. To print the sum of first n natural numbers(Re)	3 3 4	CO3,C O5,CO 6,CO1, CO2
4	 a. To utilize user defined function to find the Fibonacci series upto nterms. b. To show the factorial of a givennumber. c. To find the average of an array of integers.(Un/Ap) 	4 3 3	CO3,C O5,CO 6,CO1, CO2,C O4
	SECTION B is compulsory		
5	Viva-voce (U/An/Ap/R/Ev)	10	CO1 CO2 CO3 CO4 CO5

			CO6
6			CO1
			CO2
	Practical copy (U/Ap/Ev)		CO3
		10	CO4
			CO5
			CO6

PSG11021	HumanValues and Professional Ethics	L	Т	Р	C
Version1.0	Contact hours: 30	2	0	0	2
Pre-requisites/Exposure					
Co-requisites					

Course

Objectives

• To inculcate human values and professionalethicsinstudents.

- Toenhance the understanding of students towards personal, professional&societalrelationshipsandachieveharmonyinlife.
- Todevelopmoral responsibilities and ethical vision.

Course

Outcomes

At the completion of the course, the students will be able to:

CO1. **Show** the importance of values, ethics, harmony and lifelong learningin personal and professional life.

CO2.**Utilize** the knowledge to perform self-exploration and transformation augmenting harmony, peace and positivity in the surroundings.

CO3.**Appraise** the core values that shape the ethical behaviour of a professional

Catalog Description

This course aims to develop an understanding for a movement from rule based society to a relationship based society. Apart from teaching values, this course encourages students to discover what values are for them and for society. Self-explorational so enables the mtocritically evaluate the irpre-conditionings and present beliefs. It is designed in a way where students get familiar with the Ethical Code of Conduct, Ethical Dilemma, Conflict of Interest and all this will help them eventually in their professionallife.

Course Content

UnitI:IntroductiontoHuman [7 hours Lecture]

Values:

 $Character, Integrity, Credibility, Mutual Respect, Dedication, Perseverance, Humility and Perception .\\ Self-Assessment \& Analysis, Setting Life Goals, Conscious ness and Self-$

Transformation.TeamWork,ConflictResolution,InfluencingandWinningPeople,AngerManage ment,ForgivenessandPeace,Morality, Conscience.YogaandSpirituality

UnitII:Harmony and LifeLongLearning: [7 hours Lecture]

Harmonyinhumanbeing,NatureandExistence.Harmonyinfamilyandsociety–
Responsibilitiestowardssociety,
Freedom&Responsibilities,
LearningbeyondtheClassrooms,IndependentstudyandresearchRespectingCultural
Diversity,
Diversity,

UnitIII:IntroductiontoProfessionalEthics: [7 hours Lecture]

Work Ethics, Engineering Ethics, Moral Dilemma, Moral Development Theories, Ethical Theories-Kantinism, Utilitarianism, etc, Case Studies for Choice of the theory, Code of Ethics

UnitIV:Individual to Global Issues: [7 hours Lecture]

Industrial Standards, A Balanced Outlook on Law, Safety, Responsibility, Rights, Confidentiality, Conflict of Interest, Occupational Crime, Whistle Blowing, Environmental Ethics, Business Conduct in MNC, E-Professionalism (IPR, Internet Ethics & Privacy issues)

Text Books

2. Shetty, FoundationCoursein Human Values and Professional Ethics[R.R. Gaur,R.

Sangal, G.P.Bagaria]

Modes of Evaluation: Quiz/Assignment/ Seminar/Written Examination Scheme:

Components	MTE	Attendance	Presentation/Assignment/ etc	ETE
Weightage (%)	20	10	20	40

Relationship between the Course Outcomes (COs) and Program Outcomes (POs)

	Mapping between COs and POs				
	Course Outcomes (COs)	Mapped Programme Outcomes			
CO1	Show theimportanceofvalues, ethics, harmony and lifelong learning in personal and professional life	PO6, PO8			
	Utilize the knowledge to perform self-exploration and transformation augmenting harmony, peace and positivity in the surroundings				
CO2		PO6, PO8			
CO3	Appraise the core values that shape the ethical behaviour of a professional	PO8			

PSG11021	Code	Course	
Human Valuesand Ethics	Title	Course	
	PO1]	Fundamental Knowledge
	PO2		Critical Thinking
	PO3	ŝ	Skill
	PO4		Technical Knowledge
	PO5]	Logical Thinking
2	PO6]	Problem Identification Ability
	PO7	1	Analytical Knowledge
3	PO8	(Career Goals
	PO9		Team Work
	PO10		Sustainable Development to Environment
	PO11		Development to Society.
	PO12]	Development to Humanity

l=weakly mapped

2= moderately mapped

3=strongly mapped

MODEL QUESTION

Course: PSG11021 - Human Values and Professional

Ethics

Programme: UGAllprogram Max.Marks:60

Semester: I Time: 03 hrs.

Instructions:

Attempt any Four Questions from Section A (each carrying 6 marks); any Two Questions from Section B

(each carrying 10 marks). Section C is Compulsory (carrying 16 marks).

	SECTION A (Attempt any Four Questions)						
1.	What do you mean by happiness and Prosperity? Critically examine the prevailing	[06]					
	notions of happiness in the society and their consequences. (Ap)						
2.	How do the current world views lead to contradictions and dilemmas in professional	[06]					
	life? – Explain. (An)						
3.	What do you mean by 'Universal Human Order'? (U)						
4.	"Physical facilities are necessary and complete for animals, while they are necessary but	[06]					
	not complete for humans." Comment. (An)						
5.	Why do you think that there should be emphasis on Life Long Learning in the current	[06]					
	academic setting? (Ap) SECTION B (Attempt any Two Questions)						
5.	Critically examine the issues in professional ethics in the current scenario. List any five	[10]					
	unethical practices in profession today and the methods being tried to curb them. (Ap)	[10]					
7.							
3.	Discuss the Basic Aspects and Characteristic Features of Kohlberg's Theory and Gilligan's						
	Theory. (U)						
	SECTION C is Compulsory						
9.	Case Study VI HI FI Hose Company	[8+8]					
	Anhydrous ammoniais used to fertilize the crops. The anhydrous ammonia reacts						
	violentlywithwater. Pressurizedtanksprovidedwithwheelscarrythisfertilizer, and tanks are pulled by						
	tractors. Farmers take these tanks on rent. They take on rent or						
	purchasethehosetocarrythisammoniafromthetanktoperforatedbladesthatdiginto the soil and spread ammonia. Leaks from the hose are very dangerous.						
	In the past, the hoses were made of steel-mesh reinforced rubber, which were similar to automobile						
	tyres. Later, the reinforced-plastic hoses were introduced and they satisfied the standards. The VI HI						
	FI has been marketing these hose to the farmers. The officials of						
	the company arranged fortesting the hose as a consultancy work in the Agricultural College. The tests						
	indicated that the plastic did not react initially to the anhydrous						

ammonia. But over the years, the plastic was found to degrade and lose somemechanica properties.Hence,thecompanyattachedwarningsonallthehoses,indicatingthatthey should	ı e
eriodically.	
	S
Afterafewyearsofuseoftheproductinthemarket, several accident soccurred where the hos	d
ruptured during use and severely injured and blinded the farmers. Legal action followed an	e
the company argued in defense that the farmers had misused the hoses and not heeded t	e
replacement warnings. But they have to make substantial out-of-court settlements. Th compan	-
then dropped the product line and advertised in the press	е
askingthefarmerstoturnintheirhosesforfullrefunds. Theadvertisementstated that the hoses are	
'obsolete', and not that a unsafe.	

(a) What are the factual, conceptual and normative issues? (An)

(b) What are the methods suggested for resolving

Course Objectives

CHM 11151	Elective Chemistry I			Р	С	
Version 1.0	Contact Hours: 60 3				4	
Pre-requisites/Exposure	Physics and Chemistry of class 12 or 10+2 level					
Co-requisites	Partial differentiation, model making, graph plotting					

- 1. To introduce important concepts required in the field of the course elective chemistry. This course gives students a thorough understanding regarding the prerequisites of basic chemistry knowledges in their course curriculums.
- 2. To introduce clear understanding of energy conditions necessary to execute a feasible chemicalreaction.
- 3. To impart the basic notions of different properties of liquid states of chemical compounds and their effects withatmosphere.
- 4. To impart the concepts required for kinetics of a reaction mechanismanddeeperunderstanding of the molecular interactions which can influence chemical reactivity. Students can understand the various kinds of reaction mechanisms occurring in their daily lifecycle.
- 5. To learn the basic understanding of atomic structure of molecules important in our daily life and how nuclear reactions are pertinent to their structure.
- 6. To conceptualize the essence of molecular bonding of necessarymolecules.

Course Outcomes

On completion of this course, the students will be able to

CO-1. Identify the exclusive terminologies associated with thermodynamics and explain the basic concepts of thermodynamics i.e. heat transfer and its consequences with the thermodynamic system.

CO-2. Explain the difference between what the molecules are doing in a solid, liquid, and gas, including movement, spacing, and organization, and how this explains the physical characteristics of these states.

CO-3. Summarise the properties of solutions that depends on the number of dissolved particles in solution, but not on the identities of the solutes.

CO-4..Develop the concept of reaction rates and be able to use to predict products, yields etc. CO-5.Distinguish between the symbols for protons, neutrons, electrons, positrons, alpha particles, beta particles, and gamma rays.

CO-6 .Identify the periodic properties of elements, principles in molecular theory and bonding models to the study of inorganic compound.

Catalogoue Description:

This course gives a detailed understanding of the basics of physical and inorganic chemistry required in other disciplines. This course will include expert instructors who will introduce thermodynamics of chemical reaction, colligative properties of liquid states, the structures of nucleus and subatomic particles and their relations with the chemical properties and especially molecular bonding of important molecules of our daily life. All the lectures will be devoted on discussionsofelementaryconcepts and cutting-edge topics, focusing on practical implementation of knowledge. Instructors will conduct theory classes by taking lecture as well as power point

presentations, audio visual virtual lab sessions as perrequirementof the course. The tutorials and required assignments will acquaint the students with practical problem-solving techniques ledby thecoursecoordinator. Afterfinishingthiscourse, students from different disciplines will strongly grasp the basic concepts of the subject via exercise and discussions with the coordinator.

Course Content:

Physical Chemistry-I

Unit- 1-Thermodynamics [10 Lecture Hours]

Thermodynamics: Definition of thermodynamic terms; Concept of heat and work; First law of thermodynamics; Concept ofenthalpy (H); Expansion of ideal gas under isothermal and adiabatic conditions for reversible and irreversible processes; Concept of standard state, Standardenthalpy changes of physical and chemical transformations: fusion, sublimation, vaporization,..- - solution, dilution, neutralization, ionization.; Hess's law of constant heat summation, Second law

of thermodynamics; Heat engine; Carnot cycle and its efficiency; Entropy (S) as a state function. Spontaneous processes; Concept of Free Energy (G and A).

Unit-2-Liquid state: [4 Lecture Hours]

Liquid States and Viscosity of Fluids: Nature of the liquid state (short range order and long rangedisorder);Physicalpropertiesofliquids;Vaporpressure,Surfacetension;Surfaceenergy,General features of fluid flow (streamline flow and turbulent flow); Coefficient of viscosity and their determination.

Unit-3-Colligativeproperties[6 Lecture Hours]

Colligative Properties: What are colligative properties? Dependence of colligative properties; Freezing point depression; boiling point elevation, Raoult's Law and Vapor Pressure Lowering; osmotic pressure.

Unit-4: Chemical kinetics [10 Lecture Hours]

Chemicalkineticsandcatalysis:Orderandmolecularityofreactions;Ratelawsandrateequations for first order and second order reactions (differential and integrated forms); Zero orderreactions; Determination of order of reactions; Temperature dependence of reaction rate, energy of activation; Catalytic reactions: homogeneous and heterogeneous catalytic reactions. Enzyme catalysis

Unit-I:Atomicstructure [10 LectureHours]

Extra-nuclear Structure of atoms, Bohr's model. quantum numbers and their significance, Pauli's exclusion principle, Hund's rule, electronic configuration of many, electron atoms, Aufbauprinciple.

Unit-II: Chemical Periodicity [5 Lecture Hours]

Classification of elements on the basis of electronic configuration; Positions of hydrogen and noble gases; Atomicandionic radii; ionization potential; electron affinity; and electrone gativity; periodic and group-wise variation of above properties in respect of s- and p- block elements.

Unit-III: Radioactivity and Nuclear Structure of Atoms [5 Lecture Hours]

Natural radioactivity, group displacement law, law of radioactive decay, half-life of radio elements. AtomicNucleus: Stability of atomicnucleus, nuclear binding energy, Nuclear reactions: fission, fusion, transmutation of elements.

Unit-IV: Chemical Bonding [10 Lecture Hours]

Ionic Bonding: General characteristics of ionic compounds; Lattice energy; Born Haber cycle. Covalent bonding: General characteristics of covalent compounds; valence-bond approach, directionalcharacterofcovalent bond;hybridizationinvolvings-,p-,dorbitals;multiplebonding; ValenceShellElectronPairRepulsion(VSEPR)concept;Partialioniccharacterofcovalentbonds; Fajan'srules.Hydrogen bonding and its effect on physical and chemicalproperties.

Reference Books:

1. D. A. McQuarrie and J. D. Simon: Physical Chemistry — A Molecular Approach

- 2.G. W. Castellan: Physical Chemistry
- 3. P. W. Atkins: Physical Chemistry
- 4.J. E Huheey, E. A. Keiter, R. L. Keiter: Inorganic Chemistry (Principle and structureand reactivity).
- 5.N. N. Greenwood, A. Earnshaw: Chemistry of the Elements
- 6.D. F. Shriver, P. W. Atkins, C. H. Langford: InorganicChemistry

Examination Scheme:

Components	Mid term	Attendance	Class	End Term
			Assessment	
Weightage (%)	20	10	30	40

Relationship between the Course Outcomes (COs) with Program Outcomes (POs) and Program Educational Outcomes (PEOs)

Mapping between Cos and POs

CO-1	Identify torecognize the exclusive terminologies associated with thermodynamicsandexplainthebasicconceptsofthermodynamicsi.e. heat transfer and its consequences with the thermodynamic system.	PO1, PO2, PO4
CO- 2	Explain the difference between what the molecules are doing in a solid, liquid, and gas, including movement, spacing, and organization, and how this explains the physical characteristics of these states.	PO9, PO2,
CO-3	Summarise the properties of solutions that depends on the number of dissolved particles in solution, but not on the identities of the solutes.	PO1, PO3, PO2
CO-4	Develop the concept of reaction rates and be able to use to predict products, yields etc.	PO5, PO1, PO9
CO-5	Distinguish between of using the symbols for protons, neutrons, electrons, positrons, alpha particles, beta particles, and gamma rays.	PO6, PO2
CO-6	Identify periodic properties of elements, principles in molecular theory and bonding models to the study of inorganic compound.	PO1, PO2, PO5, PO9

7= r 2= r	BIC11151	Course Code	
l=weakly mapped = moderately manned	Elective Chemistry III	Course Title	
ed	S	PO1	Fundamental Knowledge
	3	PO2	Critical Thinking
	1	PO3	Skill
	1	PO4	Technical Knowledge
	2	PO5	Logical Thinking Ability
		PO6	Problem Identification
	ı	PO7	Analytical Knowledge
	ı		Career Goals
	2	PO9	Team Work
	ı	PO10	Sustainable Development to Environment
	ı	011	Development to Society
	I	PO12	. Development to Humanity

2= moderately mapped 3=strongly mapped

Model Question Paper

	Name:		
	Enrolment No:	ADAMAS UNIVERSITY PURSUE EXCELLENCE	
	Course: Elective Chemistry I Program: B.Sc.BiochemistryTime: 03Hrs. Max. Marks:40	-	
	Instructions: Attempt any five questions from Section A (each carrying 5 marks); all Questions from Section B (each carrying 5 marks)		
1.	Section A Show the radial probability distribution function diagram of the orbitals of 3s, 3p and 3d in a Hydrogen atom. Explain number of radial nodes of 3s and 4p orbitals.	(Ap/Un)	CO5
2	Define Hund's rule of maximum spin multiplicity and using this write down the electronic configurations of the elements having atomic no 14 and 22? 4+1 What are the possible values of ml (magnetic quantum number) for l=1?	(Un)	CO5
3	Measure the difference in electronegativity of carbon atom in C_2H_6 , C_2H_4 and C_2H_2 . Explain the hybridisation of CH_4 .	(Ev)	CO6
4	Explain Pauli's Exclusion Principle and apply this to predict the maximum capacity of s- subshell for accommodating e Relate between momentum of a particle & the wavelength associated with its wave.	(Un/An)	CO6
5	Explain the shapes of SOF ₄ , IF_2^- and XeF_2 according to VSEPR principle. b) Why F2O has smaller <fof angle="" h<sub="" than="">2O?</fof>	(Re/Un)	CO5, CO6
6	Show the d orbital wave the d orbital wave functions of dxz, dyz and dz2 orbitals. Explain the hybridizations of H_2O and NH_3 molecules.	(Un)	CO6
7	Electron affinity of carbon is greater than boron- Explain ? Why does atomic radii increase down the group and decrease across a period? (AP)	(Re/Un)	CO5, Co6
8	Section B Explain Carnot cycle. What is the prerequisite of a spontaneous reaction?	(Un/Re)	CO1
9	Define the relation between half-life and rate constant between a second order reaction. Explain the reason for the depression of freezing point.	(Un)	CO3, CO4
10	Explain the entropy and enthalpy of a chemical reaction. What is the difference between molecularity and order of a chemical reaction?	(Re/Un)	CO4

CHM 12152	Elective Chemistry Lab II L T				С	
Version 1.0	Contact Hours:45	0	0	3	2	
Pre-requisites/Exposure	Physics and Chemistry of class 12 or 10+2 level					
Co-requisites	Knowledge of Elective Chemistry III Theory					

Course Objectives

- 1.To introduce important concepts required in the field of the practical field of elective chemistry. This course gives students a detailed understanding of lab-based chemistry knowledges in their coursecurriculums.
- 2. To introduce hands on training of standard solutions essential in every practical courses. 3.
- To impart the elementary ideas of physical methods of determination of surfacetension, viscosity of organic solvents and acid catalysed hydrolysis of ester.
- 4. To learn the basic quantitative methods of titration of alkaline mixtures using various indicators.
- 5. To learn the determination methods of ionization constant of a weak acid **b**y onductometric method.
- 6. To introduce the pH metric determination procedure of neutralization of acid-base titration.
- 7. To impart the determination method for rate constant of decomposition of H2O2 by cidified KI solution using clockreactions.

Course Outcomes for SCY32207

On completion of this course, the students will be able to

CO-1. Develop skills in the proper handling of apparatus and chemicals.

CO-2. Experiment with volumetric analysis and determination of physical properties of substances.

CO-3. Determine the "overall reaction order" for a chemical reaction using the (differential) rate law

CO-4. Illustrate the monitoring a titration with a pH electrode and determining the equivalence point.

Catalogoue Description:

This course gives a detailed understanding of the basics of chemistry lab techniques required in other disciplines. This course will include expert instructors who will introduce a detailed description of lab-based chemistry knowledges in their course curriculums, methods of determination of surface tension and viscosity of common liquids, correlation of theories of kinetics in the light of acid catalysed hydrolysis of ester, different quantitative methods of acid-base titrations using direct and pH mediated methods, determination of ionization constants of weak acids by conductometric titration and clock reaction mediated rate constant determinations. All the lectures will be devoted on discussions of elementary concepts and cutting-edge topics, focusing on practical implementation of knowledge. Instructors will conduct demonstration

classes by taking lecture followed by practical hands on training per requirement of the course. The tutorials and required assignments will acquaint the students with practical problem-solving techniques led by the course coordinator. After finishing this course, students from different disciplineswillstronglyacquirethehands-ontrainingviaexperiencingpracticallabsessions with the coordinator.

Course Content:

GeneralChemistryLab:

- 1. Preparation of Solution: Normal Solution; MolarSolution
- 2. Determination of surface tension of a given solution by drop weight method using stalagmometer, considering aqueous solutions of NaCl, acetic acid, ethanol etc, as systems.
- 3. Determination of viscosity of organic solvents with Ostwald Viscometer at room temperature.
- 4. To determine the rate constant for the acid catalysed hydrolysis of anester.

InorganicChemistryLab:

- 1. Titration of Na₄CO₃ + NaHCO₃ mixture vs HCl using phenolphthalein and methyl orangeindicators.
- ². Determination of ionization constant of a weak acid by conductometricmethod
- ³.Determination of neutralizationpointofthe reaction between HC1 and NaOH with the help of pH meter.
- 4. Determination of rate constant of decomposition of H_2O_2 by acidified KI solution using clockreactions.

References:

- 1. Palit, S.R., De, S. K. Practical Physical Chemistry Science BookAgency
- 2. Handbook of Inorganic Analysis (First Edition): U.N Dhur& Sons Private Ltd.
- 3. Das, S.C. Advanced PracticalChemistry:

Modes of Examination: Assignment/Quiz/Project/Presentation/Written Exam

Examination Scheme:

Components	Mid term	Attendance	Class	End Term
			Assessment	
Weightage (%)	20	10	30	40

[30 LeectureHours]

[30 LeectureHours]

Mapping between COs, POs and PEOs

CO- 1	Develop skills in the proper handling of apparatus and chemicals.	PO1, PO3, PO7
CO- 2	Experiment with quantitative volumetric analysis and determination of physical properties of substances.	PO2, PO4, PO3,PO9
CO-3	Determine the "overall reaction order" for a chemical reaction using the (differential) rate law	PO3, PO4
CO- 4	Illustrate the monitoring a titration with a pH electrode and determining the equivalence point.	PO7, PO4, PO9

		Fundamental Knowledge	Critical Thinking	Skills	Technical Knowledge	Logical Thinking	Problem identification ability	Analytical Knowledge	Career goals	Team Work	Sustainable Development to environment	Development to society	Development to humanity
Course Code	Course Title	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CHM 12152	Elective Chemistry Lab II	1	1	2	2	-	2	3	-	2	-	-	-

1=weakly mapped

2= moderately mapped

3=strongly mapped

Model Question Paper

	Name:		
	Enrolment No:	ADAMAS	
	Course: Elective Chemistry Lab I	UNIVERSITY PURSUE EXCELLENCE	
	Program: B.Sc.Biochemistry Time: 03 Hrs.		
	Semester:Odd2020-21 Max.		
	Marks: 40		
	Section A	(An)	CO1,
1.	Determine the surface tension of toluene and acetone at room temperature.		CO2
2.	Determine the amount of Na ₂ CO ₃ and NaHCO ₃ in an unknown mixture by acid-	(An)	CO1,
	base titration.		CO2
3.	Find out the strength of unknown HCl using 0.01 N NaOH solution via conductometric titration.	(An)	CO3
4.	HNO ₃ and H ₂ SO ₄ have the same molarity. Why did H ₂ SO ₄ require about twice the volume of NaOH solution for the titration?	(Un)	CO4
5.	ExplaintheeffectofeachofthefollowingsourcesoferroronthemolarityofNaOH	(Un/An)	CO1,
	asdetermined inthis experiments tating whether the concentration of NaOH obtained		СО2,
	would be too high or toolow.		CO4
	a. The burette is contaminated with an acidsolution.		
	b. The burette contains a large air bubble in the tip, which disappears in the course		
	of thetitration.		
	c.A small volume of the acid solution is spilled when you transfer it into the		
	Erlenmeyerflask.		

CSE 11641	Elective Computer Science I	L	Т	Р	С
Version 1.0	Contact Hours: 60	4	0	0	4
Pre-requisites/Exposure	Basics of Computer knowledge				
Co-requisites					

Course Objectives

- 1. To understand the usage of computers in daily lifeapplications.
- 2. To apply the Office productivity software applications in performing different tasks 3.
- To understand about operating system about how itworks.
- 4. To study about the different types of networks and their applications.

Course Outcomes

On completion of this course, the students will be able to

CO1: Outline the usage of computers and why computers are essential components in business and society.

CO2: Experiment with a range of current, standard, Office Productivity software applications.

CO3:Evaluate office productivity software appropriate to a given situation

CO4: Utilize the Internet Web resources and evaluate on-line e-business system.

CO5: Solve common business problems using appropriate Information Technology applications and systems.

Catalog Description

This course introduces the student to the world of computers and their basics. It helps them to grasp knowledge about the different Office productivity software applications and their practical applicationscenarios. Theybecome familiar with the basics of Operating System and its different types and also get knowledge about computer networks and their principal network components.

What is Computer, Basic Applications of Computer; Components of Computer System, Central Processing Unit (CPU), VDU, Keyboard and Mouse, Other input/output Devices, Computer Memory, Concepts of Hardware and Software; Concept of Computing, Data and Information; Applications of IECT; Connecting keyboard, mouse, monitor and printer to CPU and checking power supply.

Unit II: Operating Computer using GUI Based Operating System:

8 Lecture Hours

What is an Operating System; Basics of Popular Operating Systems; The User Interface, Status Bar, Using Menu and Menu-selection, Running an Application, Viewing of File, Folders and Directories, Creating and Renaming of files and folders, Opening and closing of different Windows; Using help; Creating Short cuts, Basics of O.S Setup; Common utilities.

Unit III: Understanding Word Processing:

10 Lecture Hours

Word Processing Basics; Opening and Closing of documents; Text creation and Manipulation; Formatting of text; Table handling; Spell check, language setting and thesaurus; Mail merge, Printing of word document.

Unit IV: Using Spread Sheet:

9 Lecture Hours

Basics of Spreadsheet; Manipulation of cells; Formulas and Functions; Editing of Spread Sheet, printing of Spread Sheet, Macro.

Making Small Presentation: Basics of presentation software; Creating Presentation; Preparation and Presentation of Slides; Slide Show; Taking printouts of presentation/ handouts.

Unit V: Communications and collaboration:

15 Lecture Hours

Basics of electronic mail; Getting an email account; Sending and receiving emails; Accessing sent emails; Using Emails; Document collaboration; InstantMessaging; Netiquettes.

Unit VI: Introduction to Internet, WWW and WebBrowsers: 20 lecture hours

Basic of Computer networks; LAN, WAN; Concept of Internet; Applications of Internet; connectingtointernet;WhatisISP;KnowingtheInternet;Basicsofinternetconnectivity related troubleshooting, World Wide Web; Web Browsing software, Search Engines; Understanding URL; Domain name; IP Address; Using e-governancewebsite

List of Books:

- 1. Introduction to Computers with MS-Office, Leon, TMH
- 2. Personal Computer Software, EXCELBOOKS
- 3. A First Course in Computers 2003, Saxena, VIKAS
- 4. Windows & MS-Office 2000, Krishnan, SCITECH

Modes of Evaluation: Quiz/Assignment/ presentation/ extempore/ Written Examination Examination Scheme:

Components	Mid Term	Attendance	Class Assessment	End Term
Weightage (%)	20	10	30	40

Relationship between the Course Outcomes (COs) and Program Outcomes (POs)

	Mapping between COs and POs					
	Course Outcomes (COs)	Mapped Program Outcomes				
CO1	Outline the usage of computers and why computers are essential components in business and society.	PO1, PO3,PO5,PO8				
CO2	Experiment with a range of current, standard, Office Productivity software applications.	PO1, PO3,PO5				
CO3	Evaluate office productivity software appropriate to a given situation	PO1, PO3,PO5				
CO4	Utilize the Internet Web resources and evaluate on-line e-business system.	PO1, PO3,PO8				
CO5	Solve common business problems using appropriate Information Technology applications and systems.	PO1, PO3,PO5, PO8, PO12				

CSE 11641 Computer Science I	Course Code	
Elective Computer Science I	Course Title	
3	РО 1	Fundamental Knowledge
1	PO2	Critical Thinking
ω ω	PO 3	Skills
I	PO 4	Technical Knowledge
ω	PO5	Logical Thinking
ı	PO 6	Problem identification ability
	РО 7	Analytical Knowledge
ω	РО 8	Career goals
1	PO9	Team Work
		Sustainable Development to environment
I	РО 11	Development to society
	РО 12	Development to humanity

- 1 = weakly mapped
 2 = moderately mapped
 3 = strongly mapped

Model Question Paper

Name:

Enrolment No:

END-SEMESTER EXAMINATION (DECEMBER 2019)

(Academic Session: 2019 – 20, Semester Term: Aug. 2019 – Dec. 2019)

Name of the Program:B.Sc.BiochemistrySemester: Odd 2020-21PAPER TITLE: ELECTIVE COMPUTERSCIENCEI PAPER CODE: CSE 11641MaximumMarks:40Time duration: 3 hoursInstructions:

Attempt any three questions from Section A (each carrying 4 marks); any four from

Section B (each carrying 7 marks).

	SECTION A (Attempt any Three questions)		
1.	Distinguish between Random Access Memory and Read Only Memory.(An)	4	CO1
2.	Outline on: Keyboard.(Un)	4	CO1
3.	Define utility software and its significance.(Re)	4	CO2
4.	What is a function in Ms Excel? What function is used for counting the number?(Re)	3 1	CO3
	SECTION B (Attempt any Four questions)		
5.	 (a) What is the slide show View in Ms powerpoint?(Re) (b) What are Web sites & URL(s)? Define their usage in practical scenarios.(Re) (c) What is the difference between "operating system" & "Applicationsoftware"?(Re) 	1 2 4	CO2 CO3
6.	 (a) Outline the significance of E-mail.(Un) (b) What are the productivity tools in an Email account?Define them.(Re) 	2 5	CO4
7.	Explain the keyboard shortcuts for the following functions:- a)Making fonts bold: b)Making fontsunderlines: c)Making fontsitalic: d)Increasing fontsize: e)Making a paragraph right-aligned: What is the procedure of inserting Symbols in an MS Word document? (Un)	5 2	CO3, CO2
8.	 a) What are the uses of Header and Footer in MSWord? b) How can you correct the spelling and grammatical mistakes in MS Word?(Re) 	5	CO2, CO3

		2	
9.	 (a) Discuss about Mail Merge in MS Word? (b) What is chart in MS Excel? Name three types ofcharts? (c) What is slide transition? (Re /Cr) 	3 3 1	CO2, CO3

CSE12642	Elective Computer Science I Lab	L	Т	Р	C
Version 1.0	Contact Hours:45	0	0	3	2
Pre-requisites/Exposure	Theory of Elective Computer Science I at B.Sc Level				
Co-requisites					

Course Objectives

1. To understand the usage of computers in daily lifeapplications.

2. To apply formatting features in Word application to create documents. 3.

To apply different formula in Excel to calculate and processinformation.

4. To apply slide transitions, themes and formatting features to create a power point presentation.

Course Outcomes

On completion of this course, the students will be able to

- CO1: Develop the concept aboutword and its different features.
- CO2: Create different documents using Word.
- CO3: Utilize mail merge to create template using word.
- CO4: Develop the concept excel and its different formulas.
- CO5: Create presentation with animation and effects.

Catalog Description

This course introduces the student to the world of computers and their basics. It helps them to grasp knowledge about the different Office productivity software applications and their practical applicationscenarios. Theybecome familiar with the basics of Operating System and its different types and also get knowledge about computer networks and their principal network components.

Course Content

List of experiments:

- 1. Introduction and familiarization with word with different type of stylings. [4 Lecture Hours]
- 2. Table creation in and basic formatting. [4 LectureHours]
- 3. Inclusion of image and editing image using Word and some basic designing features. [4 LectureHours]

- 4. Example of Mail-merge. [4 LectureHours]
- 5. Create spreadsheet with some basic calculation. [4 LectureHours]
- 6.Creating Spreadsheet with some advance level formula and conditions. [4 Lecture Hours]
- 7. Creating Macro in spreadsheet. [4 LectureHours]
- 8. Creating colour conditioning in spreadsheet. [4 LectureHours]

9. Creating different kinds of charts in spreadsheet. [4 Lecture Hous]10.
Creating basic presentation. [4 LectureHours]
11. Inclusion of different levels of animations in the presentation. [5 Lecture Hours]
12. Project on Word. [5 Lecture Hours]
13. Project on Excel. [5 LectureHours]
14. Project on power-point. [5 LectureHours]

Reference Books

List of Books:

- 1. Introduction to Computers with MS-Office, Leon, TMH
- 2. Personal Computer Software, EXCELBOOKS
- 3. A First Course in Computers 2003, Saxena, VIKAS
- 4. Windows & MS-Office 2000, Krishnan, SCITECH

Modes of Evaluation: Quiz/Assignment/ presentation/ extempore/ Written Examination Examination Scheme:

Components	Mid Term	Attendance	Class Assessment	End Term
Weightage (%)	20	10	30	40

Mapping between COs and POs					
	Course Outcomes (COs)	Mapped Program Outcomes			
CO1	Develop the concept aboutword and its different features.	PO1,PO3			
CO2	Create different documents using Word.	PO3,PO5,PO7,PO8			
CO3	Utilize mail merge to create template using word.	PO3,PO5,PO7			
CO4	Develop the concept excel and its different formulas.	PO3,PO5,PO7			
CO5	Create presentation with animation and effects.	PO3,PO5,PO7			

		Fundamental Knowledge	Critical Thinking	Skills	Technical Knowledge	Logical Thinking	Problem identification ability	Analytical Knowledge	Career goals	Team Work	Sustainable Development to environment	Development to society	Development to humanity
Course Code	Course Title	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CSE12642	Elective Computer Science I Lab	1	-	3	-	3	-	3	-	-	-	-	-

1 = weakly mapped

2 = moderately mapped

3 = strongly mapped

Model Question Paper

Name: Enrolment No:

END-SEMESTER EXAMINATION (DECEMBER2019)

(Academic Session: 2019 – 20, Semester Term: Aug. 2019 – Dec.2019)

Name of theProgram:B.Sc.BiochemistrySemester: Odd 2020-21PAPER TITLE: Elective Computer ScienceILabPAPER CODE:CSE12642MaximumMarks:40Time duration: 3 hoursInstructions:Instruction: 3 hours

Attempt any two questions from Section A (each carrying 10 marks); Section B is

Compulsory (carrying 10 marks).

	Section A (Attempt any Two)		
1	a) Create your bio-data in Worddocument.	5	CO1
	b) Create a table with basic formatting.	3	CO2
	c)Insert image using Word and apply bordereffects.(Cr)	2	CO3
2	a) Illustrate Mail-merge inWord.	5	CO1
	b) Create spreadsheet with some basiccalculation.	3	CO4
	c) Create a basic presentation and apply a suitable theme.(Un/Cr)	2	CO5
3	a) Create Spreadsheet with some advance level formula and conditions.	4	CO4
	b) Create Macro inspreadsheet.	3	
	c) Create colour conditioning in spreadsheet.(Cr)	3	
4	a) Create different kinds of charts inspreadsheet.	4	CO1
	b) Discuss different levels of animations in the presentation.	3	CO4
	c) Create Word document and insert hierarchical smart art.(Cr)	3	CO5
	SECTION B is compulsory		
5 V	/iva-voce (U/An/Ap/R/Ev)	10	CO1
			CO2
			CO3
			CO4
			CO5

SDS11506	Elective Statistics-I	L	Τ	P	C
Version 1.0	Contact Hours :90	5	1	0	6
Pre-requisites/Exposure	12 th level Mathematics				•
Co-requisites					

Course Objectives:

The objective of this course for the graduate student is:

- 1. To provide abasic understanding of statistical data with preparation and presentation of data. 2.
- Todevelopthestatistical concepts of the discrete and continuous variables or data and its
 - various central and dispersion measures, regression, and correlation analysis with applications in simple real life examples.

Course Outcomes:

On completion of this course, the students will be able to:

- **CO1: Define** different types of statistical data, attributes, and variables (discrete and continuous) with frequency distribution.
- **CO2: Find** various measures of central tendency and dispersion for grouped and ungrouped data, regression lines and correlation coefficients.
- CO3: Summarize, collect, and present the different types ofdata graphically and numerically.
- **CO4: Compare** the results obtain from various central and dispersion measures, regression, and correlationAnalysis.
- **CO5:** Utilize the concept of correlation and regression and its properties to obtain the solution of simple statistical/business/economicsproblems.

Catalogoue Description:

Knowledgeofbasicstatisticsandmethodsisnecessarytoworkonstatisticaldataforthebeginners of graduate students. This course gives an idea and understanding about the several statistical methods and measures are used to extract the information from various types of data comes from statistical problems. This course deals with data collection, preparation and presentation with frequency distribution, various measures of central tendency and dispersion, correlation, regressionanalysis, and tsapplication instatistical problems. Classeswillbeconducted by lecture as well as power point presentation, audio visual session as per requirement. The tutorials will familiarize the students with practical problem-solving techniques

guided by the course coordinator. Students will strongly grab the basic concepts of the subject via exercise and discussions with the coordinator.

Elective Statistics -I		т	D	C
			r	C
Paper Code:	5	1	0	6

Course Content

Unit-I

Collection and Scrutiny of Data

Statistical data: Primary Data and Secondary Data, Collection of Data, Presentation of data, tabular representation of data, Scrutiny of Data.

Unit-II

Frequency Distribution

Attribute and variable, Discrete variable and continuous variable, Frequency Distribution of an Attribute, Frequency Distribution of a variable, Case of a discrete variable, Case of a continuous variable, Graphical Representation of a frequency Distribution, Frequency curve.

Unit-III

Presentation of Data

Frequency data and non-frequency data, Textual presentation of Data, Tabulation of Data, Diagrammatic presentation of Data (Bar chart, pie diagram, Histogram, Ogives).

Unit-IV

Measures of Central Tendency:

Meaning of Central Tendency, Common measure of Central Tendency, Requirements of an ideal Average, Comparison of Mean, Median and Mode, Geometric Mean and Harmonic Mean, weighted Means.

Unit-V

Measures of Dispersion:

Range, Mean Deviation, Standard Deviation, Quantiles and Percentiles, Quantile Deviation, Comparison of the Measures of Dispersion, Some important relations, Measures of relative Dispersion.

Unit-VI Moments and Measures of Skewness and Kurtosis:

Moments, Relationship between central and ordinary moments, Skewness, Kurtosis, Some important relations.

Unit-VII

Correlation and Regression:

Correlation: Scatter diagram, Karl-Pearson's correlation, concurrent deviation method, rank correlation, uses of correlation in business regression, regression lines, regression coefficients, properties of regression coefficients, Use of regression in business problems.

(17L)

(8L)

(12L)

(14L)

(15L)

(13L)

(13L)

Books Recommended

T1. A.M. Goon, M.K. Gupta and B. Dasgupta (2005): *Fundamentals of Statistics*, Vol. I, 8th Ed., World Press, Kolkata

T2. S.C. Gupta and V.K. Kapoor (2007): *Fundamentals of Mathematical Statistics*, 11th Ed., Sultan Chand and Sons.

Reference book:

R1. N. G. Das (2009): Statistical Methods, combined edition (vol I & II), McGraw Hill Education (India).

Modes of Evaluation: Quiz/Assignment/ presentation/ extempore/ Written Examination Examination Scheme:

Components	Mid Term	Attendance	Class Assessment	End Term
Weightage (%)	20	10	30	40

Relationship between the Course Outcomes (COs) and Program Outcomes (POs)

	Mapping between COs and POs							
	Course Outcomes (COs)	Mapped Program Outcomes						
CO1	Define different types of statistical data, attributes, and variables (discrete and continuous) with frequency distribution.	PO1, PO3,PO7						
CO2	Find various measures of central tendency and dispersion for grouped and ungrouped data, regression lines and correlation coefficients.	PO1, PO3, PO7						
CO3	Summarize , collect, and present the different types of data graphically and numerically.	PO1, PO3, PO5, PO7						
CO4	Compare the results obtain from various central and dispersion measures, regression, and correlation Analysis.	PO1, PO3, PO5, PO7						
CO5	Utilize the concept of correlation and regression and its properties to obtain the solution of simple statistical/business/economics problems.	PO1, PO3, PO5, PO7						

SDS115 06	Course Code	
Elective Statistics I	Course Title	
S	PO1	Fundamental Knowledge
	PO2	Critical Thinking
ω	PO 3	Skill
	PO 4	Technical Knowledge
2	PO 5	Logical Thinking Ability
	6 6	Problem Identification
ω	PO 7	Analytical Knowledge
	PO8	Career Goals
	6C	Team Work
	PO1 0	Sustainable Development to Environment
	PO1 1	Development to Society
	PO1 2	Development to Humanity

1=weakly mapped 2= moderately mapped 3=strongly mapped

Model Question Paper

	Name: Enrolment No:										VERSITY VERSITY EXOCULENCE		
Pro	Course: Elective Statistics-IProgram: B.Sc.inBiochemistryTime: 03Hrs.Semester:Odd 2020-21Max. Marks:4												
Atte	Instructions: Attempt any three questions from Section A (each carrying 4 marks); any from Section B (each carrying 10 marks). Section C is Compulsory (carry											-	
				Se	ection	A (A	ttempt	any T	hree))			
1.	a) Define	e prim	ary and	ł seco	ndary	data.	(R)					2	CO1
	b) Expla a variabl		h illust	ration	the d	istinc	tion be	tween	an at	tribu	te and	2	CO3
2.	Draw the followin Wages(g freq	0		-)-)	lygon 1 80- 89 14	90- 99 10	100 100 5	0-	110- 119 2	4	CO3
	employ . (U)	rees											
3.	a) What central n				ributic	on? W	hat ar	e the r	aw an	nd the	e	2	CO2
	b) From Pearson'		-									2	CO2
4.	Ten han ranking method, Judge 1 Judge 2 . (Ap)	are gi	iven be	low.	Make lo you	use draw	of rank	c corre the res	elation			4	CO5
	<u> </u>	SI	ECTIC	NB(Atten	npt an	y Two	Ques	tions))			

5.	The score of two batsmen, A and B, in ten innings during a certain season, are as under:													
	A 32 28 47 63 71 39 10 60 96 14									10	CO4			
	B	19	31	48	53	67	90	10	62	40	80		10	001
		pare this more				entify	who is	better	score	getter	and			
6.	 a) The arithmetic mean of two observations is25 and their geometric mean is 15. Find (i) their harmonic mean and (ii) the two observations.(R) b) The number of telephone calls received in 245 successive one 									0	4	CO2		
	minu	teinterv bution:	valsat	-	-								6	
	No. calls		0	1	2	3	4	5	6	7	Total			
	Free	quency	14 21	25 43	8 51 40	39 1	2 245							CO2
	Find	I the m	ean, n	nedian	, and	mode.	(R)							
7.	Find the mean, median, and mode. (R) While calculating the coefficient of correlation between two variables x and y, the following results were obtained: n=25, $\sum x=125$, $\sum y=100$, $\sum x^2=650$, $\sum y^2=460$, $\sum xy=508$. It was however later discovered at the time of checking that two pair of observations (x, y) were copied (6,14) and (8,6), while the correct values were (8,12) and (6,8) respectively. Find the correct value of the coefficient of correlation. (R)									er 1s re	10	CO2		
				SEC	CTION	N C is	Comp	oulsor	y					
8.	utiliz	the for these these all is 22	e two	equati	ons to	estim	ate the	yield	of cro	ps wh	en the		5	CO2
					y (Y	ield in	n kg.)	X	(Rainf	all in	cm.)			
		Mea				508.4				.6.7			3	CO5
	S.D. 36.8 4.6													
	Coef	ficient	of cor	relatio	on bety	ween y	vield a	nd rair	nfall =	0.52.	(R, Ap)		

SEMESTER 5

Course Title	CONCEPTOF GENETICS	L	Т	Р	С			
BIC11026		3	1	0	4			
Contact Hours	60							
Pre-requisites/Exposure	Basic Understanding of Cell Biology and Biochemistry							

Course Objectives

1. To gain a deeper understanding in the history and developments in the field of Genetics. 2. To be able to perform and explain geneticsexperiments.

Course Outcomes

On completion of this course, the students will be able to

- CO1 gather**knowledge**abouttheworkingprincipleofallinstrumentsneededforgeneticspractical. CO2 **illustrate** the process of mitosis andmeiosis.
- CO3 **perform** karyotyping with the help ofphotographs.

CO4 **develop** pedigree charts of some common characters like blood group, colour blindness and PTC tasting.

CO5 **demonstrate** BarrBody.

Catalog Description:

The core-course of 'Concept of Genetics' will help to understand the concept of genetics with experimental point of views. This course includes comprehensive approach through studying karyotyping,differentstagesofcelldivision,roleofbarbodyandtocheckthepresenceofbarbody following conclusion. All the lectures will be devoted on discussions of basic theories and advanced topics, focusing on practical implementation of knowledge. Classes will be conducted by lecture as well as power point presentation, audio visual virtual lab session as per requirement. The tutorials will enable the students with problem-solving ability led by the course coordinator. Students will perceive the basic concepts of the subject via exercise and discussions with the coordinator.

CONCEPT IN GENETICS

- Introduction to model organisms and Mendelism: Model organisms: Escherichia coli, Saccharomyces cerevisiae, Drosophila melanogaster, Caenorhabditis elegans, Danio rerio and Arabidopsis thaliana, Basic principles of heredity.
- 2. Applications of Mendel's principles & chromosomal basis of heredity: Laws of probability & binomialexpansion, formulating and testing genetic hypothesis, chromosomal basis of Mendelism -Sutton and Boveri hypothesis with experimental evidences.
- 3. Extensions of Mendelism: Allelic variation and gene function dominance relationships, multiple alleles, lethal alleles and null alleles. Pleiotropy gene interaction epistatic and non epistatic, interaction between gene(s) and environment.

Penetrance and expressivity, norm of reaction and phenocopy.

- 4. Genetic definition of a gene: Complementation test, limitations of cis-trans test, intragenic complementation, rII locus of phage T4 and concept of cistron
- 5. Genetics of bacteria and viruses: Mechanism of genetic exchange conjugation, transformation and transduction. Gene mapping in bacteria.
- 6. Linkage, crossing over and mapping techniques
- 7. Linkage and crossing over, genetic mapping in eukaryotes, centromere mapping with ordered tetrads, cytogenetic mapping with deletions and duplications in Drosophila, detection of linked loci by pedigree analysis in humans and somatic cell hybridization for positioning genes on chromosomes.
- 8. Human pedigree analysis: Pedigree conventions, characteristics of dominant and recessive inheritance. Applications of pedigree analysis.
- 9. The genetic control of development and sex determination: Model organism for genetic analysis, Drosophila development, maternal effect genes, morphogens and zygotic gene activity in development, sex chromosomes and sex determination, dosage compensation of X-linked genes.
- 10. Organelle heredity and epigenetics: Extra nuclear inheritance, tests for organelle heredity and maternal effect, epigenetic mechanisms of transcriptional regulation & genomic imprinting.
- 11. Chromosomal aberrations: Variations in chromosome number- monosomy and trisomy of sex and autosomes. Variations in chromosome structure inversions, deletions, duplications and translocations.
- 12. Inheritance of complex traits & population genetics: Inheritance of complex trait, analysis of quantitative traits, narrow and broad sense heritability, quantitative trait loci (QTL) and their identification. Hardy- Weinberg law, predicting allele and genotype frequencies and exceptions to Hardy-Weinberg principle.
- 13. Evolutionary genetics: Molecular evolution analysis of nucleotide and amino acid sequences, molecular phylogenies, homologous sequences, phenotypic evolution and speciation.

SUGGESTED READINGS

- 1. Genetics (2012) 6th ed., Snustad, D.P. and Simmons, M.J., John Wiley & Sons. (Singapore), ISBN: 978-1-118-09242-2.
- 2. Genetics A Conceptual Approach (2012), 4th ed., Pierce, B.A., W.H. Freeman & Co. (New York), ISBN:13:978-1-4292-7606-1 / ISBN:10:1-4292-7606-1.
- 3. An Introduction to Genetic Analysis (2010), 10th ed., Griffiths, A.J.F, Wessler, S. R, Carroll, S. B. and Doebley, J., W.H. Freeman & Company (New York), ISBN:10: 1-4292-2943-8.

Modes of Examination: Assignment/Quiz/Project/Presentation/Written Exam Examination Scheme:

Components	Internal	Attendance	Mid Term	End Term
Weightage (%)	30	10	20	40

2

Mapping	between COs and POs	
	Course Outcomes (COs)	Mapped Program Outcomes
CO1	gather knowledge about the working principle of all instruments needed for genetics practical.	PO1, PO3, PO4
CO2	illustrate the process of mitosis and meiosis.	PO1, PO2, PO4
CO3	perform Karyotyping with the help of photographs.	PO1, PO2, PO3, PO4, PO5
CO4	develop pedigree charts of some common characters like blood group, colour blindness and PTC tasting.	PO1, PO2,PO3, PO4, PO5, PO6, PO10, PO11
CO5	demonstrate Barr Body.	PO1, PO2, PO3, PO4,PO5, PO7, PO8

Relationship between the Course Outcomes (COs) and Program Outcomes (POs)
Relationship between the Course Outcomes (COS) and Frogram Outcomes (I OSJ

		Fundamental Knowledge	Critical Thinking	Skill	Technical Knowledge	Logical Thinking Ability	Problem Identification	Analytical Knowledge	Career Goals	Team Work	Sustainable Development to Environment	Development to Society	. Development to Humanity
Course Code	Course Title	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
BIC12026	Concept of Genetics	3	2	2	3	3	1	1	1	-	1	1	-

1=weakly mapped

2= moderately mapped

3=strongly mapped

Nan	ne:				
Enr	olment No:	ADAMAS UNIVERSITY PURSOE EXCELLENCE			
Pro Sem	rse: BIC12027 Concept of GENETICS gram:B.Sc.Biochemistry ester:Odd2020-21 ructions:	Time: 03Hrs. Max. Marks:40			
	mpt any Two questions from Section A (each carrying 10 marl	ks)			
	CTION A (Attemptany Two questions)	,			
1.	Perform the given experiment A and write down its Principle and interpret the result. (An)	10	CO1, CO2		
2.	Perform the given experiment B and write down its principle and illustrate the result.(Ev)	10	CO1, CO2		
3.	Perform the given experiment C and write down its principle and interpret the result.(An)	10	CO1, CO2 CO3		
4.	Perform the given experiment D and write down its Principle and interpret the result.(An)	10	CO4 CO5		
	SECTION B is compulsory				
5.	Viva-voce (U/An/Ap/R/Ev)	10	CO1 CO2 CO3 CO4 CO5		
6.	Practical copy (U/Ap/Ev)	10	CO1 CO2 CO3 CO4 CO5		

Course Title	CONCEPTOF GENETICS LAB	L	Т	Р	С	
BIC12027		0	0	3	2	
Contact Hours	45					
Pre-requisites/Exposure	Basic Understanding of Cell Biology and Biochemistry					

2. To gain a deeper understanding in the history and developments in the field of Genetics. 2. To be able to perform and explain geneticsexperiments.

Course Outcomes

On completion of this course, the students will be able to

- CO1 gather**knowledge**abouttheworkingprincipleofallinstrumentsneededforgeneticspractical. CO2 illustrate the process of mitosis andmeiosis.
- CO3 **perform** karyotyping with the help ofphotographs.
- CO4 **develop** pedigree charts of some common characters like blood group, colour blindness and PTC tasting.
- CO5 **demonstrate** BarrBody.

Catalog Description:

The core-course of 'Concept of Genetics lab' will help to understand the concept of genetics with experimental point of views. This course includes comprehensive approach through studying karyotyping,differentstagesofcelldivision,roleofbarbodyandtocheckthepresenceofbarbody following conclusion. All the lectures will be devoted on discussions of basic theories and advanced topics, focusing on practical implementation of knowledge. Classes will be conducted by lecture as well as power point presentation, audio visual virtual lab session as per requirement. The tutorials will enable the students with problem-solving ability led by the course coordinator. Students will perceive the basic concepts of the subject via exercise and discussions with the coordinator.

Course Content Concept of GENETICS LAB

Topic

- 1. Observation of Mitosis in onion root tip. (5 Hours)
- 2. Observation of Mitosis in garlic root tip. (5 Hours)
- 3. Identification of different stages of meiosis in onion flower buds.(5 Hours)
- 4. Identification of different stages of meiosis in garlic.(5 Hours)
- 5. Demonstration of Barr Body from epithelial cells of human female. (10 Hours)
- 6. Study of polyploidy in onion root tip by colchicine treatment. (10 Hours)
- 7. Karyotyping with the help of photographs.(10 Hours)
- 8. Mendelian deviations in dihybrid crosses.(10 Hours)

Books & Other Resources

1. Gardner, E.J., Simmons, M.J., Snustad, D.P. (2006). Principles of Genetics. VIIIEdition JohnWiley&Sons.

2. Snustad, D.P., Simmons, M.J. (2009). Principles of Genetics. VEdition. John Wiley and SonsInc.

3.Klug, W.S., Cummings, M.R., Spencer, C.A. (2009).Concepts of Genetics. IX Edition.BenjaminCummings.

4. Russell, P.J. (2009). Genetics-AMolecular Approach. IIIE dition. Benjamin Cummings. 5. Griffiths, A.J.F., Wessler, S.R., Lewontin, R.C. and Carroll, S.B. IX Edition. Introduction to Genetic Analysis, W. H. Freeman & Co.

Modes of Examination: Assignment/Quiz/Project/Presentation/Written Exam Examination Scheme:

Components	Internal	Attendance	Mid Term	End Term
Weightage (%)	30	10	20	40

Mapping	between COs and POs	
	Course Outcomes (COs)	Mapped Program Outcomes
CO1	gather knowledge about the working principle of all instruments needed for genetics practical.	PO1, PO3, PO4
CO2	illustrate the process of mitosis and meiosis.	PO1, PO2, PO4
CO3	perform Karyotyping with the help of photographs.	PO1, PO2, PO3, PO4, PO5 PO4,
CO4	develop pedigree charts of some common characters like blood group, colour blindness and PTC tasting.	PO1, PO2,PO3, PO4, PO5, PO6, PO10, PO11
CO5	demonstrate Barr Body.	PO1, PO2, PO3, PO4,PO5, PO7, PO8

Relationship between the Course Outcomes (COs) and Program Outcomes (POs)
Relationship between the Course Outcomes (COS) and Frogram Outcomes (I OSJ

		Fundamental Knowledge	Critical Thinking	Skill	Technical Knowledge	Logical Thinking Ability	Problem Identification	Analytical Knowledge	Career Goals	Team Work	Sustainable Development to Environment	Development to Society	. Development to Humanity
Course Code	Course Title	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
BIC12027	Concept of Genetics Lab	3	2	2	3	3	1	1	1	-	1	1	-

1=weakly mapped

2= moderately mapped

3=strongly mapped

Nar	ne:				
Enr	olment No:	ADAMAS UNIVERSITY PURSUE EXCELLENCE			
Pro Sen	rse: BIC12027 Concept of GENETICS LAB(Practical) gram:B.Sc.Biochemistry nester:Odd2020-21	Ti Max. Marks	ime: 03Hrs. :40		
	ructions: empt any Two questions from Section A (each carrying 10 mar	ks)			
	CTION A (Attemptany Two questions)	Kb)			
1.	Perform the given experiment A and write down its Principle and interpret the result. (An)	10	CO1, CO2		
2.	Perform the given experiment B and write down its principle and illustrate the result.(Ev)	10	CO1, CO2		
3.	Perform the given experiment C and write down its principle and interpret the result.(An)	10	CO1, CO2 CO3		
4.	Perform the given experiment D and write down its Principle and interpret the result.(An)	10	CO4 CO5		
	SECTION B is compulsory				
5.	Viva-voce (U/An/Ap/R/Ev)	10	CO1 CO2 CO3 CO4 CO5		
6.	Practical copy (U/Ap/Ev)	10	CO1 CO2 CO3 CO4 CO5		

BIC11028	Gene expression and regulation	L	Т	Р	C
Version 1.0	Contact Hours:60	3	1	0	4
Pre-requisites/Exposure	Basic Understanding of Biochemistry				
Co-requisites	-				

1. To understand biosynthesis of RNA in prokaryotes and eukaryotes. 2.

To gain knowledge in RNAsplicing.

3. To know biosynthesis of proteins and mechanism of its degradationprocess.4.

To understand regulation of gene expression in prokaryotes and eukaryotes.

Course Outcomes

On completion of this course, the students will be able to

1	
CO1	explain and categorize biosynthesis of RNA
	in prokaryotes andeukaryotes.
CO2	discuss RNAsplicing.
CO3	discuss about Principles of molecularcell
	biology ofcancer.
CO4	demonstrate and illustrate Biosynthesis of proteins and
	mechanism of its degradation process.
CO5	explain and categorize regulation of gene expression in prokaryotes
	andeukaryotes.
	•

Catalog Description

To provide an understanding of i) the regulation of transcription in eukaryotic organisms; ii) posttranscriptional regulation; iii) the structure, formation and function of microRNAs; iv) how the process of translation is controlled.

Course Content

1. Unit I Biosynthesis of RNA in prokaryotes [20 LectureHours]

RNA polymerases, transcription cycle in bacteria, sigma factor, bacterial promoters, identification of DNA binding sites by DNA footprinting, the three stages of RNA synthesis, initiation, elongation and termination, rho-dependent and rho-independent termination. Inhibitors of transcription and applications as anti-microbial drugs.

2. Unit II Biosynthesis of RNA in eukaryotes [20 LectureHours]

Comparisonbetweenprokaryoticandeukaryotictranscription.TranscriptionbyRNApolymerase II, RNA polymerase II core promoters, general transcription factors, various types of RNA processing, transcription by RNA polymerase I and III. Inhibitors of eukaryotic transcription and their applications.Comparison of fidelity oftranscription and replication.

3.Unit III RNA splicing [20 LectureHours]

Chemistry of RNA splicing, the spliceosome machinery, splicing pathways, group I introns

Modes of Evaluation: Quiz/Assignment/ presentation/ extempore/ Written Examination Examination Scheme:

Components	Mid Term	Attendance	Class Assessment	End Term
Weightage (%)	20	10	30	40

Relationship between the Course Outcomes (COs) and Program Outcomes (POs)

Mapping between COs and Pos						
	Course Outcomes (COs)	Mapped Program Outcomes				
CO1	Explain and categorize biosynthesis of RNA in prokaryotes and eukaryotes.	PO1, PO2				
CO2	Discuss RNA splicing	PO1,PO2, PO3,				
CO3	Discuss about Principles of molecular cell biology of cancer.	PO1, PO3, PO4,				
CO4	Demonstrate and illustrate Biosynthesis of proteins and mechanism of its degradation process.	PO6, PO7, PO10				
CO5	Explain and categorize regulation of gene expression in prokaryotes and eukaryotes	PO8, PO9, PO11, PO10, PO12				


BIC1102 8	Code	Course	
Gene expressi on and regulatio N	Title	Course	
3	1	РО	Fundamental Knowledge
2	2	РО	Critical Thinking
2	3	PO	Skill
1	4	PO	Technical Knowledge
ı	5	РО	Logical Thinking Ability
1	9	РО	Problem Identification
1	Τ	РО	Analytical Knowledge
1	8	РО	Career Goals
1	6	РО	Team Work
2	0	PO1	Sustainable Development to
1		PO1	Development to Society
1	2	PO1	. Development to Humanity

1=weakly mapped 2= moderately mapped 3=strongly mapped

Model Question Paper

Name:

Enrolment No:

Course: BIC11028Gene expression and regulationProgram:B.SCBiochemistryTime: 03Hrs.Semester:Even 2019-20Max. Marks:40

Instructions:

Attempt any three questions from Section A (each carrying 4 marks); any four Questions from Section B (each carrying 7 marks).

	Section A (Attemptan	y Three)	
1.	In eukaryotes, which RNA polymerase makes rRNA?.(U)	4	CO1
2.	Which subunits of RNA polymerase is solely required for initiation of transcription?. (U)	4	CO2
3.	Which codons is the mRNA start codon that initiates translation?? (R)	4	CO3
4.	Which describes the key function of helicases during transcription?(U)	4	CO3
	SECTION B (Attempt any FOUR Questions)		
5.	Transcription factors that are the first to bind DNA in heterochromatin regions, often promote euchromatin formation, and recruit other transcriptional machinery to promote transcription are best known as which of the following? (R)	7	CO4
1.	Before RNA polymerase can initiate transcription, this protein must bind to it, creating the RNA polymerase holoenzyme and allowing for the initiation of transcription. (Ap)	7	CO3,CO5
7.	Which is not dependent on the C- terminal domain (CTD) of RNA polymerase II?(U)	7	CO4

8.	Describe some common chromosomal mutations: inversions, deletions, duplications, fusions, fissions, and translocations. (U),	7	CO5
9.	Name the two basic kinds of point mutations. (U),	7	C01

BIC12029	Gene expression and regulation Lab	L	Т	Р	С
Version 1.0	Contact Hours:45	0	0	3	2
Pre-requisites/Exposure	Basic understanding of Biochemistry				
Co-requisites	-				

- 1. To isolate and show total nucleic acids from plant tissue.2.
- To isolate totalRNA.
- 3. To develop the concept and diferentiate between parent and recombinant plasmid containingbacteria.
- 4. To understand proteinmodeling.
- 5. To conceptualize transcription factor identification through in silicoanalysis.

Course Outcomes

CO1 isolate and **analyse**of total nucleic acids from planttissue.

CO2	Interpret the results of total RNA isolation.
CO3	categorize between parent and recombinant plasmidcontaining
	bacteria.
CO4	demonstrate proteinmodelling.
CO5	examine transcription factor identification through in silicoanalysis.

Catalog Description

How science is done through the practice of experimental inquiry. Under the guidance of the instructorandteachingassistant,studentsworkinsmallteamstodesignexperimentsandtesttheir designs in a fully equipped, state-of-the-art laboratory. A number of technical skills are utilized, including gene cloning, DNA amplification and mutagenesis by PCR, in vitro transcription and translation,andpurificationandanalysisofproteins.Studentsassemblesyntheticgenesfromparts andanalyzethecontributionofthesepartsintheregulationofgeneexpression,fromtranscription totranslation.

Course Content

11solation of mRNA by affinity chromatography. (5Hours)

- 2 Pore plate technique (5Hours)
- 3 Plate streaking technique (5Hours)
- 4 Competent Cell preparation (5Hours)
- 5 Bacterial Transformation (10 Hours)
- 6 Replica Plating (10 Hours)
- 7 Spread plate technique (10 Hours)
- 8 MIC Assay (10 Hours)

Reference Books

1. Molecular Biology of the Gene (2008) 6th ed., Watson, J.D., Baker, T.A., Bell, S.P., Gann, A., Levine, M. and Losick, R., Cold Spring Harbor Laboratory Press, Cold spring Harbor (New York), ISBN:0-321-50781 /ISBN:978-0-321-50781-5.

2. Lehninger: Principles of Biochemistry (2013) 6th ed., Nelson, D.L. and Cox, M.M., W. H. Freeman & Company (New York), ISBN:13: 978-1-4292-3414-6 / ISBN:10-14641-0962-1.

Modes of Evaluation: Quiz/Assignment/ presentation/ extempore/ Written Examination Examination Scheme:

Components	Mid Term	Attendance	Class Assessment	End Term
Weightage (%)	20	10	30	40

Relationship between the Course Outcomes (COs) and Program Outcomes (POs)

	Mapping between COs and Pos				
	Course Outcomes (COs)	Mapped Program Outcomes			
CO1	isolate and analyse of total nucleic acids from plant tissue.	PO1, PO11			
CO2	Interpret the results of total RNA isolation.	PO1,PO2, PO3,			
CO3	categorize between parent and recombinant plasmid containing bacteria.	PO1, PO2, PO3, PO4, PO5, PO11			
CO4	demonstrate protein modelling.	PO1, PO5, PO12,			
CO5	examine transcription factor identification through in silico analysis.	PO1, PO6, PO8, PO9			

BIC12029 Gene expressi on and regulatio n Lab	Course Code	
Gene expressi on and regulatio n Lab	Course Title	
3	РО 1	Fundamental Knowledge
2	РО 2	Critical Thinking
2	PO 3	Skill
-	PO 4	Technical Knowledge
2	PO 5	Logical Thinking Ability
1	6 6	Problem Identification
ı	PO 7	Analytical Knowledge
-	PO 8	Career Goals
1	PO 9	Team Work
	POI 0	Sustainable Development to Environment
1	POI 1	Development to Society
	PO1 2	. Development to Humanity

1=weakly mapped 2= moderately mapped 3=strongly mapped

Model Question Paper

Name: Enrolment No:		ADAMAS UNIVERSITY PURSUE EXCELLENCE
Program:B.SCB Semester:Even 2		sion and regulation Lab Time: 03Hrs. Max. Marks:40
1.	What kind of cells is used for extraction of DNA in the experiment?. (U)	C01
2.	Isolation of genomic DNA follows the same principles as that of obtainingplasmid from E. coli. Which of the following is not included in it?. (U)	CO2
3.	How many methods are there for obtaining the plasmid DNA from the bacteria? (R)	CO4
4.	Proteins can be removed via by which treatment? (Ap)	CO3, CO5
5.	The nucleic acid remaining in the solution can be precipitated by addition of sodium or ammonium acetate and ethanol? (Ap)	СО3
6.	Adsorption onto a solid phase support followed by elution is used as an alternative for separation of which component?? (Ap)	CO2
7.	Which components bind to the solid column made of silica, under high salt concentration?? (U)	CO4 CO2 CO3
8.	Purification of DNA by using silica derivatized groups by DEAE is termed as? (U)	CO2

BIC11030	BIOINFORMATICS (THEORY)	L	Т	Р	C
Version 1.0	Contact Hours - 60	3	1	0	4
Pre-requisites/Exposure	Basic understanding of biochemistry and DNA	,RN	ΙA		
Co-requisites					

- 1. To provide students with apt understanding of informatics for biologicaldata.
- 2. It will also provide in depth knowledge of data basses, sequence analysis, alignment **atp**hylogeny.
- 3. It will also offer an outline of basic prediction methods for biological system.4.
- In depth understanding of structure prediction for proteins and RNA.

Course Outcomes

On completion of this course, the students will be able to

CO 1 explainvarious components of data base, data transfer and data bases & organize them accordingly.

CO 2 illustrate, relate and interpret various biological data bases and file formats

CO 3 perceive alignment, perform phylogenetic analysis and build the same

CO 4 organizeand deduct the omics data, primarily genomics and proteomics

CO 5 design, set up experiments for structural modelling also summarize drug designing protocols.

CatalogDescription

The course of 'bioinformatics' will help to understand the basic concept and application of computationalbiology.Thiscourseincludescomprehensiveapproachthroughstudyingdatabases, sequence alignment and phylogenetic analysis. Furthermore, the application of computation structurepredictionwillalso beelaborated.Allthelectureswillbedevotedondiscussionsofbasic theoriesandadvancedtopics,focusingonpracticalimplementationofknowledge.Classeswillbe conducted by lecture as well as power point presentation, audio visual virtual lab session as per requirement. The tutorials will enable the students with problem- solving ability led by thecourse coordinator. Students will perceive the basic concepts of the subject via exercise and discussions with thecoordinator.

Course Content

Unit 1 Introduction to Computer Fundamentals[12 Lecture Hours]

RDBMS - Definition of relational database Mode of data transfer (FTP, SFTP, SCP), advantage of encrypted data transfer

Unit 2 Introduction to Bioinformatics and Biological Databases Biological databases [12 Lecture Hours]

- nucleic acid, genome, protein sequence and structure, gene expressiondatabases, Database of metabolicpathways,Modeofdatastorage–Fileformats-FASTA,BLAST,GenbankandUniprot, Data submission & retrieval from NCBI, EMBL, DDBJ, Uniprot,PDB

Unit 3 [12 Lecture Hours]

Sequence Alignments, Phylogeny and Phylogenetic trees- Local and Global Sequence alignment, pairwiseandmultiplesequencealignment.Scoringanalignment,Gappenalties,ClustalW,scoring matrices, PAM & BLOSUM series of matrices Types of phylogenetic trees, Different approaches of phylogenetic tree construction - UPGMA,Neighbour joining, MaximumParsimony, Maximum likelihood

Unit 4 Genome organization and analysis[12 Lecture Hours]

Diversity of Genomes: Viral, prokaryotic & eukaryotic genomes, Genome, transcriptome, proteome, 2-D gel electrophoresis, MaldiToff spectroscopy, Major features of completed genomes: E.coli, S.cerevisiae, Arabidopsis, Human

Unit 5 Protein Structure Predictions [12 Lecture Hours]

Hierarchy of protein structure - primary, secondary and tertiary structures, modeling Structural Classes, Motifs, Folds and Domains Protein structure prediction in presence and absence of structure template Energy minimizations and evaluation by Ramachandran plot Protein structure and rational drug design

Text Book:

1. Essential Bioinformatics, Jin XIONG, CAMBRIDGE

Reference Books:

1. Sanjay S (2003). A First Course in Computers, Vikas PublishingHouse

2. Pradeepand SinhaPreeti(2007).FoundationsofComputing,4thed.,BPBPublications

4. Rastogi SC., Mendiratta N. and Rastogi P. (2007). Bioinformatics: methods and applications, genomics, proteomics and drugdiscovery, 2nded. Prentice HallIndia Publication

5. Primrose and Twyman (2003). Principles of Genome Analysis&Genomics.Blackwell

Modes of Evaluation: Quiz/Assignment/ presentation/ extempore/ Written Examination Examination Scheme:

Components	Mid Term	Attendance	Class Assessment	End Term
Weightage (%)	20	10	30	40

Relationship between the Course Outcomes (COs) and Program Outcomes (POs)

	Mapping between COs and POs													
		Course Outcomes (COs)					Map Prog Outco	ram						
CO	1	explain var	ious c	ompoi	nents	of data	a base					PO1, PO3		
СО	2	Illustrate, r data bases a			-	t varic	ous bio	ologica	al		P	01, PC	02, PO4	4
СО	3	perceive ali analysis and	l build	l the s	ame		-				P	01, PC	02, PO4	4
CO	4	organize an genomics an				es data	ı, prin	narily				PO1, PO5,		
CO	5	design set up experiments for structural modelling also summarize drug designing protocols.					P	PO1, PO2, PO3, PO5, PO8						
			Fundamental Knowledge	Critical thinking	Skill	Technical Knowledge	Logical Thinking	Problem identification ability	Analytical Knowledge	Career goals	Team Work	Sustainable Development to environment	Development to society	Development to humanity
Course Code	Cours	se Title	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12
BIC11 030	BIOI TICS	NFORMA	3	3	2	2	2	-	-	2	-	-	-	-

1=weakly mapped

2= moderately mapped

3=strongly mapped

Nai	ne:	ADAMAS V	
Eni	rolment No:	ADAMAS UNIVERSITY PURSUE EXCELLENCE	
Pro	urse: BIC11030- BIOINFORMATICS (THEORY) gram:B.Sc. Biochemistry nester:Odd2019-20	Time: 03H Max. Mar	
Atte Sect	tructions: empt any four questions from Section A (each carrying 5 marks tion B (each carrying 10 marks).	s); any two	questions from
SE	CTION A (Attemptany Four questions)		
1.	What are <i>tuples</i> and <i>attributes</i> in a relational data base? How are they organized to build up the data base?(U)	2+3	CO1
2.	Mention a scenario with the rationale when you will chose PAM matrices over BLOSUM for scoring an alignment.(U)	5	CO2
3.	Write a brief note on <i>PRALINE</i> , mentioning its applicability(Ap)	5	CO3
4.	Outline the features of eukaryotic genes. Name two gene prediction tools.(An)	3+2	CO4
5	Define <i>motif</i> and <i>domain</i> of a protein.(U)	2.5X2	CO5
	SECTION B (Attempt any Two questions)		
6.	Compare <i>rooted</i> and <i>unrooted</i> phylogenetic trees. What is the significance of out-group in an evolutionary tree? What are the differences in phyllogram and cladogram?(U)	4+2+4	CO3
7.	How gene phylogeny differs with species phylogeny? Discuss the basis of building up a NJ tree?(Ap)	5+5	CO1 CO2
8.	What can be the possible criterion for <i>ab initio</i> operon prediction? Fix scoring criterion for operon prediction considering <i>lac</i> operon as a model.(U)		CO1 CO2
9	What are the advantages of cryoEM over X-ray crystallography in determining protein structure? Howa coordinate file is built in PDB format? How can you visualize structure from PDB file?(U)	3+3+4	CO5

BIC11032	DSE I Basic Microbiology (Theory)	L	Т	Р	C
Version 1.0	Contact Hours: 60	3	1	0	4
Pre-requisites/Exposure	Knowledge of Biomolecules				
Co-requisites	-				
	-				

1. To understand different type of microorganisms.

2. To provide knowledge about structures of different types of bacteria. 3.

To understand the different types of virus.

4. To be able to know different types of protozoa.

5. To gain knowledge about different types offungus.

Course Outcomes

On completion of this course, the students will be able to

- CO1. Classifyandillustrateimportanceofviruses, viroids and vrions.
- CO2. Categorize and discuss importance of bacteria.
- CO3. Classify and **discuss** importance of algae.
- CO4. **Categorize** the importance offungus.
- CO5. Classify and discuss importance of

protozoa.

Catalog Description

Microbiology is the study of microorganisms, those being unicellular, multicellular, or acellular. Microbiology encompasses numerous sub-disciplines including virology, bacteriology, protistology, mycology, immunology and parasitology. Eukaryotic microorganisms possess membrane-bound organelles and include fungi and protists, whereas prokaryotic organisms-all of which are microorganisms-are conventionally classified as lacking membrane-bound organelles and include Bacteria and Archaea. Microbiologists traditionally relied on culture, staining, and microscopy. However, less than 1% of the microorganisms present in common environments can be cultured in isolation using current means. Microbiologists often rely on molecular biology tools such as DNA sequence based identification, for example the 16S rRNA gene sequence used for bacteria identification. Viruses have been variably classified as organisms as they have been considered either as very simple microorganisms or very complex molecules. Prions, never considered as microorganisms, have been investigated by virologists, however, as the clinical effects traced to them were originally presumed due to chronic viral infections, and virologiststooksearch—discovering"infectiousproteins". The goal of this paper toconceptualize about the characteristics of microorganism.

Unit I History of DevelopmentofMicrobiology [10 LectureHours]

Development of microbiology as a discipline, Spontaneous generation vs. biogenesis.Contributions of Anton von Leeuwenhoek, Louis Pasteur, Robert Koch, Joseph Lister,Alexander Fleming. Role of microorganisms in fermentation, Germ theory of disease,Development of various microbiological techniques and golden era of microbiology,

Establishment of fields of medical microbiology and immunology through the work of Paul Ehrlich, Elie Metchnikoff, Edward Jenner

Unit II Diversity of Microbialworld [10 Lecture Hours]

BinomialNomenclature,Whittaker'sfivekingdomandCarlWoese'sthreekingdomclassification systemsandtheirutility.Differencebetweenprokaryoticandeukaryoticmicroorganisms.General characteristicsofdifferentgroups:acellularmicroorganisms(Viruses,Viroids,Prions)andCellular microorganisms (Bacteria, Algae, Fungi and Protozoa) with emphasis on distribution and occurrence, morphology, mode of reproduction and economicimportance.

Unit III Viruses, viroids and prions [10 Lecture Hours]

An introduction to virus eswith special reference to the structure and replication of the following: Poxvirus, Poliovirus, HIV, T4 and λ phage, lytic and lysogenic cycles.

UnitIVBacteria [10 LectureHours]

An account of typical eubacteria, chlamydiae& rickettsiae (obligate intracellular parasites), mycoplasma, and archaebacteria (extremophiles).Applications of bacteria in industry, environment and food.

UnitVAlgae [10 LectureHours]

History of phycology; General characteristics of algae including occurrence, thallus organization, algae cell ultra structure, pigments, flagella, eyespot food reserves and vegetative, asexual and sexual reproduction. Applications of Algae in agriculture, industry, environment and food.

UnitVIFungi [8 LectureHours]

Historical developments in the field of Mycology, significant contributions of eminent characteristics of fungi including habitat, distribution, mycologists. General nutritional requirements, fungal cell ultra- structure, thallus organization and aggregation, fungal wall structure and synthesis, asexual reproduction, sexual reproduction, heterokaryosis, heterothallism and parasexual mechanism. Economic Importance of Fungi in Agriculture, environment, Industry, medicine, food, biodeterioration, mycotoxins

UnitVIIProtozoa [2 LectureHours]

General characteristics with special reference to Amoeba.

Reference Books

- Prescott, Harley, Klein's Microbiology (2008) 7th Ed., Willey, J.M., Sherwood, LM, Woolverton, C.J. McGraw Hill International Edition (New York) ISBN: 978-007-126727.
- 2. Mandell, Douglas and Bennett.S, Principles and practices of Infectious diseases, 7n edition, Volume, 2. Churchill LivingstoneElsevier
- 3. Sherris Medical Microbiology: An Introduction to Infectious Diseases by Kenneth J.Ryan, C. George Ray, Publisher:McGraw-Hill
- 4. Medical Microbiology by Patrick R. Murray, Ken S. Rosenthal, Michael A. Pfaller, Elsevier HealthSciences.
- 5.Brooks GF, Carroll KC, Butel JS and Morse SA. (2007). Jawetz, Melnick and Adelberg'sMedical Microbiology. 24th edition. McGraw HillPublication
- 6. Goering R, Dockrell H, Zuckerman M and Wakelin D. (2007). Mims' Medical Microbiology. 4th edition. Elsevier.

Modes of Evaluation: Quiz/Assignment/ presentation/ extempore/ Written Examination Examination Scheme:

Components	Mid Term	Attendance	Class Assessment	End Term
Weightage (%)	20	10	30	40

Relationship between the Course Outcomes (COs) and Program Outcomes (POs)

	Mapping between COs and Pos				
	Course Outcomes (COs)	Mapped Program Outcomes			
CO1	Classify and illustrate importance of viruses, viroidsandvrions	PO1, PO3, PO4, PO5, PO8, PO11			
CO2	Categorize and discuss importance of bacteria.	PO1, PO3, PO4, PO5, PO8, PO11			
CO3	Classify and discuss importance of algae.	PO1, PO4, PO5, PO8, PO11			
CO4	Categorize the importance of fungus.	PO1, PO4, PO5, PO8, PO11			
CO5	Classify and discuss importance of protozoa.	PO1, PO4, PO5, PO8,			

BIC11032	Course Code	
DSE I Basic Microbiology	Course Title	
S	PO1	Fundamental Knowledge
1	PO2	Critical Thinking
2	PO3	Skill
3	PO4	Technical Knowledge
ω	PO5	Logical Thinking
	PO6	Problem Identification Ability
	PO7	Analytical Knowledge
3	PO8	Career Goals
1	PO9	Team Work
	010	Sustainable Development to Environment
3	PO11	Development to Society.
,		Development to Humanity

1=weakly mapped 2= moderately mapped 3=strongly mapped

Model Question Paper

ъT		
	ame:	
τ.	ame	

Enrolment No:

Course: BIC11032 – DSE I Basic Microbiology

Program:B.ScBiochemistry Semester:Odd2020-21 Time: 03 Hrs. Max. Marks:40

Instructions:

Attempt any three questions from **Section A** (each carrying 4 marks); any **Two Questions** from **Section B** (each carrying 10 marks). **Section C** is Compulsory (carrying 8 marks).

	Section A (Attemptany	y Three)	
1.	Mycoplasmas are considered atypical, rather than gram positive or gram negative. Why is it not possible to use a standard Gram stain technique to classify these bacteria? What color would they appear if stained using a Gram stain technique?(U)	3 1	CO1
2.	If Spallanzani had unknowingly poked a hole in the top of his flask of meat broth, what would this have implied about the theory of spontaneousgeneration?(An)	4	CO2
3.	Both prokaryotes and eukaryotes have ribosomes, but some antibiotics specifically target prokaryotic ribosomes. How is it possible to use these antibiotics to treat human diseases and how do they affect eukaryotic cells?(Ap)	2 2	CO4
4.	Would pili be more advantageous to bacteria in a rapidly changing or in an unchanging environment? Please explain your answer.(U)	1 3	CO3 CO4
	SECTION B (Attempt any Two Questions)		
5.	Describe the structure of the cell wall of E.coli. Mention the effect of penicillin on this cell wall(U)	5 5	CO1 CO2
6.	Compare between the lysogenic and lytic cycle of bacteriophage at	5 5	CO4 CO2

	the light of molecular dimension(U)		CO3
7.	Compare the structures of mycoplasma and protozoa with proper description. Write down the sterilization principle of autoclave and laminar air flow.(Ap)	4 3 3	CO3 CO5
	SECTION C is Compulsory		
8.	All microbial cells in a bacterial culture are not instantaneously killed when they are exposed to a lethal chemical agent. Why? Explain briefly. Blood agar is both differential and enriched media. Explain. Contrast between 'Chemostat' and 'Turbidostat'.(Ap)	2 2 2 2	CO2

BIC11034	DSE I Molecular Basis of Noninfectious	L	T	Р	С	
	Human Disease (Theory)					
Version 1.0	Contact Hours: 60	3	1	0	4	
Pre-requisites/Exposure	Basic Knowledge of Biochemistry and Microbiology					
Co-requisites	-					

1. To gain knowledge about different type of nutritional disorders.

2. To study different types of metabolic disorders.

3. To provide knowledge about the different types of cancer and multifactorial disorders.

4. To gain insight about different types of protein misfoldingdisorders.

5. Outline different types of monogenic diseases.

Course Outcomes

On completion of this course, the students will be able to

1. **Summarize** different nutritional disorders.

2. Illustrate different metabolic and lifestyledisorders.

3. Summarize importance of multi factorial complex disorders and Cancer. 4.

Illustrate different protein misfoldingdisorders.

5. Discuss different monogenic diseases.

Catalog Description

A noninfectious disease is a disease that is not transmissible directly from one person to another. ThiscategoryincludeParkinson's disease, autoimmune diseases, strokes, most heart diseases, most

cancers, diabetes, chronic kidney disease, osteoarthritis, osteoporosis, Alzheimer's disease, cataracts, and others. NCDs may be chronic or acute. Most are non-infectious, although there are some non-communicable infectious diseases, such as parasitic diseases in which the parasite'slife cycle does not include direct host-to-hosttransmission.

Noninfectious diseases are the leading cause of death globally. In 2012, they caused 68% of all deaths (38 million) up from 60% in 2000. About half were under age 70 and half were women. Risk factors such as a person's background, lifestyle and environment increase the likelihood of certain NCDs. Every year, at least 5 million people die because of tobacco use and about 2.8 million die from being overweight. High cholesterol accounts for roughly 2.6 million deaths and 7.5 million die because of high blood pressure. In this paper the molecular mechanism behind these kinds of disease will be investigated.

Course Content

 Nutritional disorders: Overview of major and minor nutrient components in the diet. Balanced diet and the concept of RDA. Nutrient deficiencies; Kwashiorkor andMarasmus, Scurvy, beriberi, pellagra and B12 deficiency, Xerophthalmia and Night blindness, Vitamin D deficiency, Vitamin K deficiency. Discuss with relation to biochemical basis for symptoms.

[8 Lecture Hours]

- 2. MetabolicandLifestyledisorders:Obesityandeatingdisorders likeAnorexianervosaand Bullemia. Diabetes mellitus A metabolic syndrome and the relationship with hypertension, obesity, hypothyroidism and stress. Cardio vascular disorders and Atherosclerosis-defining the broad spectrum of ailments that fall in this category, understanding the factors that contribute to the syndrome, stages of disorder and the management ofthecondition. Irritable bowel syndrome- biochemistry behind the disorder and the influence of diet, stress and environment on the condition. [8 LectureHours]
- 3. Multifactorial complex disorders and Cancer: Understanding the definition of multifactorial diseases. Polygenic diseases and the relationship of environmental factors and genetic makeup in the onset of diseases. [6 Lecture Hours]
- 4. Cancer:characteristicsofatransformedcell,causesandstagesofCancer,molecularbasis for neoplastic growth and metastasis, Proto-oncogenes and tumor suppressor genes; Cancer causing mutations; Tumor viruses; Biochemical analysis of cancer; Molecular approaches to cancer treatment.[8 LectureHours]
- 5. Disorders of mood : Schizophrenia, dementia and anxiety disorders. [6 LectureHours]
- 6. Polycystic ovarian syndrome, Parkinson's disease, ALS. [8 LectureHours]
- 7. Diseasesduetomisfoldedproteins: Introduction proteinfolding and proteosomeremoval of misfolded proteins; etiology and molecular basis for Alzheimer's, Prion diseases, Huntington's Chorea, sickle cell anemia, Thalassemia. [8 LectureHours]
- Monogenic diseases: In born errors in metabolism: PKU, Alkaptonuria, Maple syrup urine disease; Receptor and transport defects: Cystic fibrosis, Long QT syndrome, familial hypercholesterolemia, Achondroplasia. Hemoglobinopathies and clotting disorders. [8 Lecture Hours]

Reference Books

- 1. Textbook of Biochemistry with Clinical Correlations (2011) Devlin, T.M. John Wiley&Sons, Inc. (New York), ISBN:978-0-4710-28173-4.
- 2. Introduction to Human Physiology(2013) 8th edition; Lauralee Sherwood. Brooks/Cole, Cengage Learning. The World of the cell, 7th edition(2009)
- 3. Genetics (2012) Snustad and Simmons, 4.

Cooper, G.M. and Hausman, R.E.2009

5. The Cell: A Molecular Approach. 5th edition. ASM Press & Sunderland, Washington, D.C.; Sinauer Associates, MA.

Modes of Evaluation: Quiz/Assignment/ presentation/ extempore/ Written Examination Examination Scheme:

Components	Mid Term	Attendance	Class Assessment	End Term
Weightage (%)	20	10	30	40

Relationship between the Course Outcomes (COs) and Program Outcomes (POs)

	Mapping between COs and Pos				
	Course Outcomes (COs)	Mapped Program Outcomes			
CO1	Summarize different nutritional disorders.	PO1, PO2, PO3, PO5, PO6, PO7,PO8, PO11			
CO2	Illustrate different metabolic and lifestyle disorders.	PO1, PO2, PO3, PO5, PO6, PO7,PO9, PO11			
C03	Summarize importance of multi factorial complex disorders and Cancer.	PO1, PO2, PO3, PO5, PO6, PO7,PO8, PO11			
CO4	Illustrate different protein misfolding disorders.	PO1, PO2, PO3, PO5, PO6, PO7, PO11			
CO5	Discuss different monogenic diseases.	PO1, PO2, PO3, PO5, PO6, PO7, PO11			

BIC11034	Course Code	
DSE I Molecular Basis of Noninfectious Human Disease	Course Title	
ယ	PO1	Fundamental Knowledge
ယ	PO2	Critical Thinking
ယ	PO3	Skill
1	PO4	Technical Knowledge
3	PO5	Logical Thinking
ω	PO6	Problem Identification Ability
ယ	PO7	Analytical Knowledge
2	PO8	Career Goals
1	PO9	Team Work
	PO10	Sustainable Development to Environment
ω	PO11	Development to Society.
1	PO12	Development to Humanity

1=weakly mapped 2= moderately mapped 3=strongly mapped

Model Question Paper

Program:B.Scl Semester:Odd2 Instructions:	BIC11034 – DSE IM Biochemistry 2020-21			as Human Disease Time: 03Hrs. Max. Marks:40 any Two Questions from
Section B (each	carrying 10 marks). S			ng 8 marks).
1.	Discuss the disorders related to deficiency at mole		4	CO1
2.	Describe the class cancers briefly.(U	ification of	4	СО3
3.		he differences goiter and r along with	4	CO2
4.	Illustrate the causesymptoms of mapledisease andphenylketonuria.(ASECTION B (AtQuest	tes and le syrup urine (Ap) ttempt any Two	2 2	CO5
5.	Describe the signation for establishing the mutated k-ras generated checkpoints of cell the occurrence of the signation of th	alling pathway e cancer by e. How the l cycle regulates	5 5	CO3
6.	Discuss the role of the occurrence of mellitus. Which ty designed by traci signalling pathwa possible mechanisn	mutant IRS-1 in type II diabetes pes of drugs are ng the specific tys? State the	5 3 2	CO2

7.	Discuss the signalling mechanism behind the cardiac failure due to the hypercholesterolemia and the preventive measures and treatments against it.(U)	6 2 2	CO3 CO5
	SECTION C is Compulsory		
8.	Describe the different causes of Parkinson's disease. Write down the names of the drugs designed against it and mention the	5 2 3	CO2
	mechanism of action of any one of them.(Ap)		

BIC12031	BIOINFORMATICS (LAB)	L	Т	Р	С		
Version 1.0	Contact Hours - 45	0	0	3	2		
Pre-requisites/Exposure	Basic Knowledge of biochemistry and computers						
Co-requisites							

- 1. Developing knowledge of computationalbiology
- 2. To have general perception of data base and data structure
- 3. To get accustomed with basic bioinformaticsmethods
- 4. To obtain the broader perspective of application of bioinformatics

Course Outcomes

On completion of this course, the students will be able to

CO1 utilize various operating systems

CO2 survey and combine information from biological data bases

CO3 deduce evolutionary relationship through sequence alignment and build phylogenetic tree

CO4 interpret ORFs from DNA sequence data and design specific primers for performing PCR

CO5 construct structural models of proteins and DNA; perceive the basis of drug designing protocols.

Catalog Description

The core-course of 'bioinformatics' will help to understand the basic concept and application of computational biology. This course includes comprehensive approach through studying data

28

bases, sequence alignment and phylogenetic analysis. Furthermore, the application of computation structure prediction will also be elaborated. All the lectures will be devoted on discussions of basic theories and advanced topics, focusing on practical implementation of knowledge. Classes will be conducted by lecture as well as power point presentation, audio visual virtual lab session as per requirement. The tutorials will enable the students with problem- solving ability led by the course coordinator. Students will perceive the basic concepts of the subject via exercise and discussions with the coordinator.

Course Content

- 1. Database Mining
- 2. Pairwise Alignment
- 3. Multiple Sequence Alignment
- 4. Translate and Backtranslate
- 5. BLAST
- 6. Gene and ORF prediction
- 7. Protein Motif & Function Prediction
- 8. Molecular Phylogeny
- 9. Homology Modelling
- 10. Primer Designing

Text Book:

1. Essential Bioinformatics, Jin XIONG, CAMBRIDGE

Reference Books:

1. Sanjay S (2003). A First Course in Computers, Vikas PublishingHouse

2. Pradeep and SinhaPreeti (2007). Foundations of Computing, 4th ed., BPBPublications

4. Rastogi SC., MendirattaN. and Rastogi P. (2007). Bioinformatics: methods and applications, genomics, proteomics and drugdiscovery, 2nded. Prentice HallIndia Publication

5. Primrose and Twyman (2003). Principles of Genome Analysis&Genomics.Blackwell

Modes of Evaluation: Quiz/Assignment/ presentation/ extempore/ Written Examination Examination Scheme:

Components	Mid Term Attendan		Class Assessment	End Term
Weightage (%)	20	10	30	40

	Mapping between COs and POs							
	Course Outcomes (COs)	Mapped Program Outcomes						
CO1	utilize various operating systems	PO1, PO3						
CO2	survey and combine information from biological data bases	PO1, PO2, PO4						
CO3	deduce evolutionary relationship through sequence alignment and build phylogenetic tree	PO1, PO2, PO4						
CO4	interpret ORFs from DNA sequence data and design specific primers for performing PCR	PO1, PO2, PO5, PO8						
CO5	construct structural models of proteins and DNA; perceive the basis of drug designing protocols.	PO1, PO2, PO3, PO5, PO8						

Relationship between the Course Outcomes (COs) and Program Outcomes (POs)

Course		Fundamental Knowledge	Critical thinking	Skill	Technical Knowledge	Od Logical Thinking	Problem identification ability	Analytical Knowledge	Career goals	Team Work	Sustainable Development to environment	Development to society	Development to humanity
Course Code	Course Title	PO 1	PO 2	PO 3	PO 4	РО 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12
		-	_	-		_	Ŭ	,	Ŭ	-			
BIC12 031	BIOINFORMA TICS (LAB)	3	3	2	2	2	-	-	1	-	-	-	-

1=weakly mapped

2= moderately mapped

3=strongly mapped

Nai	ne:			
En	rolment No:		ADAMA UNIVERSIT	AS Y HOE
Co	urse: BIC12031 - BIOINFORMATICS LAB			
Pro	B	ime: 03 Hrs	. Semester:	: Odd2019-20
	Max. Marks:40			
Ins	tructions:			
Att	empt any four questions from Section A (each ca	rrying 5 mar	ks); any tw	o questions from
Sec	tion B (each carrying 10 marks).			
SE	CTION A (Attemptall questions)			
SE 1.	CTION A (Attemptall questions) Design primer for cloning <i>Leishmaniainfantum</i>		20	CO1
	CTION A (Attemptall questions) Design primer for cloning <i>Leishmaniainfantum</i> in pET16b vector for expressing an N-terminal			CO1
	CTION A (Attemptall questions) Design primer for cloning <i>Leishmaniainfantum</i>	y His-tagged		CO1 CO2
1.	CTION A (Attemptall questions) Design primer for cloning <i>Leishmaniainfantum</i> in pET16b vector for expressing an N-terminal LiAQP1.(Ap)	y His-tagged	1 E	CO2 CO1,
1. 2.	CTION A (Attemptall questions) Design primer for cloning <i>Leishmaniainfantum</i> in pET16b vector for expressing an N-terminal LiAQP1.(Ap) Predict conserved motifs and domains for LiAC	y His-tagged	10 10	CO2 CO1, CO2,
1. 2.	CTION A (Attemptall questions) Design primer for cloning <i>Leishmaniainfantum</i> in pET16b vector for expressing an N-terminal LiAQP1.(Ap) Predict conserved motifs and domains for LiAC	y His-tagged	10 10	CO2 CO1, CO2, CO3,
1. 2. 3.	CTION A (Attemptall questions) Design primer for cloning <i>Leishmaniainfantum</i> in pET16b vector for expressing an N-terminal LiAQP1.(Ap) Predict conserved motifs and domains for LiAO Lab note book.(U/Ap/An)	y His-tagged	1 10 5	CO2 CO1, CO2, CO3, CO4
1. 2.	CTION A (Attemptall questions) Design primer for cloning <i>Leishmaniainfantum</i> in pET16b vector for expressing an N-terminal LiAQP1.(Ap) Predict conserved motifs and domains for LiAC	y His-tagged	10 10	CO2 CO1, CO2, CO3,
1. 2. 3.	CTION A (Attemptall questions) Design primer for cloning <i>Leishmaniainfantum</i> in pET16b vector for expressing an N-terminal LiAQP1.(Ap) Predict conserved motifs and domains for LiAO Lab note book.(U/Ap/An)	y His-tagged	1 10 5	CO2 CO1, CO2, CO3, CO4 CO1,

BIC12033	DSE I Basic Microbiology Lab (Practical)	L	Т	Р	C	
Version 1.0	Contact Hours: 45	0	0	3	2	
Pre-requisites/Exposure	Basic understanding of Biochemistry and Microbiology					
Co-requisites	-					

- 1. To gain the knowledge about different type of microorganisms
- 2. To distinguish between gram positive and gram negativebacteria3.
- To characterize the different kinds offungi.
- 4. To characterize different kinds of virus.
- 5. To gain the knowledge about different typesprotozoa.

Course Outcomes

On completion of this course, the students will be able to

CO1 Classify and discuss identify of viruses, viroids and prions through microscope. **CO2 Develop** concept basic principle and applications of important instruments (biological safety cabinets, autoclave, incubator, BOD incubator, hot air oven, light microscope, pH meter) **CO3 Test** the proper sterilization of culture media for bacterial cultivation.

CO4 Examine different shapes of bacteria will be able to characterize them using permanent slides/ pictographs

CO5 Examine the fungus by cotton blue staining.

Catalog Description

Microbiology is the study of microorganisms, those being unicellular, multicellular, or acellular. Microbiology encompasses numerous sub-disciplines including virology, bacteriology, protistology, mycology, immunology and parasitology.Eukaryotic microorganisms possess membrane-bound organelles and include fungi and protists, whereas prokaryotic organisms—all of which are microorganisms—are conventionally classified as lacking membrane-bound organelles and include Bacteria and Archaea. Microbiologists traditionally relied on culture, staining, and microscopy. However, less than 1% of the microorganisms present in common environments can be cultured in isolation using current means. Microbiologists often rely on molecular biology tools such as DNA sequence based identification, for example the 16S rRNA gene sequence used for bacteria identification.Viruses have been variably classified as organisms as they have been considered either as very simple microorganisms or very complex molecules. Prions, never considered as microorganisms, have been investigated by virologists, however, as the clinical effects traced to them were originally presumed due to chronic viral infections, and virologists took search—discovering "infectious proteins". The goal of this paper to identify, analyze and characterize the microorganism.

- 1. Microbiology Laboratory Practices and Biosafety. [10 LectureHours]
- 2. To study the principle and applications of important instruments (biological safety cabinets, autoclave, incubator, BOD incubator, hot air oven, light microscope, pH meter). [10 LectureHours]
- 3. Preparation and sterilization of culture media for bacterial cultivation[10 Lecture Hours]
- 4. Study of different shapes of bacteria, fungi, algae, protozoa using permanent slides/pictographs [10 LectureHours]
- 5. Staining of bacteria using Gram stain [10 LectureHours]
- 6. Isolation of pure cultures of bacteria by streaking method. [5 LectureHours]
- 7. Estimation of CFU count [5 LectureHours]

Reference Books

1. Prescott, Harley, Klein's Microbiology (2008) 7th Ed., Willey, J.M., Sherwood, L.M., Woolverton, C.J. McGraw Hill International Edition (New York) ISBN: 978-007-126727.

2. Mandell, Douglas and Bennett.S, Principles and practices of Infectious diseases, 7th edition, Volume, 2. Churchill LivingstoneElsevier

3. Sherris Medical Microbiology: An Introduction to Infectious Diseases by Kenneth

J.Ryan, C. George Ray, Publisher:McGraw-Hill

4. Medical Microbiology by Patrick R. Murray, Ken S. Rosenthal, Michael A. Pfaller, Elsevier HealthSciences.

5. Brooks GF, Carroll KC, Butel JS and Morse SA. (2007). Jawetz,

6. Melnick and Adelberg's Medical Microbiology. 24th edition. McGraw Hill

Publication7.Goering R, Dockrell H, Zuckerman M and Wakelin D. (2007). Mims' Medical Microbiology. 4th edition.Elsevier.

Modes of Evaluation: Quiz/Assignment/ presentation/ extempore/ Written Examination Examination Scheme:

Components	Mid Term	Attendance	Class Assessment	End Term
Weightage (%)	20	10	30	40

	Mapping between COs and Pos							
	Course Outcomes (COs)	Mapped Program Outcomes						
CO1	classify and discuss identify of viruses, viroids and prions through microscope.	PO1, PO2, PO3,PO4, PO7,PO8						
CO2	develop concept basic principle and applications of important instruments (biological safety cabinets, autoclave, incubator, BOD incubator, hot air oven, light microscope, pH meter)	PO1, PO2, PO3, PO4, PO7,PO8						
C03	test the proper sterilization of culture media for bacterial cultivation.	PO1, PO2, PO3, PO4, PO7,PO8						
CO4	illustrate different shapes of bacteria will be able to characterize them using permanent slides/ pictographs	PO1, PO2, PO3, PO4, PO7,PO8						
CO5	illustrate the fungus by cotton blue staining	PO1, PO2, PO3, PO4, PO7,PO8						

Relationship between the Course Outcomes (COs) and Program Outcomes (POs)

		Fundamental Knowledge	Critical Thinking	Skill	Technical Knowledge	Logical Thinking	Problem Identification Ability	Analytical Knowledge	Career Goals	Team Work	Sustainable Development to Environment	Development to Society.	Development to Humanity
Course Code	Course Title	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
BIC12033	DSE I Basic Microbiology Lab	3	3	3	3	-	-	3	3	-	-	-	-

1=weakly mapped

2= moderately mapped

3=strongly mapped

Name: Enrolment No: Program:B.ScBi		A Basic N	Time: 03Hrs.
Semester:Odd20	020-21		Max. Marks:40
	questions from Section A (each carrying 10 marks) is Compulso		10 marks); any Two Questions from
	Section A (Atten	mpt any '	Гhree)
1.	Identify the specimen of thetw given slides (Ap) ,writedow their speci characteristics and their relation with infectious disease.(An)	fic 5	CO1,CO2, CO3,CO4,CO5
2.	Perform the Gram staining procedure with the supplied bacterial sample(Ap),write down the principle, procedure observation and inference.(Ar		CO4
3.	Perform the streak plate to grow the single colony ofE.co on nutrient agarplate(Ap),writ down the principle, procedure observation and inference.(Ar	oli te 10 c, 1)	CO3
	SECTION B (Attempt any Two Questions)	r	
5.	Viva-Voce (U/An/Ap/R)	10	CO1, CO2,CO3, CO4,CO5
6.	Laboratory No Book(U/An/Ap/Ev)	ote 10	CO1, CO2,CO3, CO4,CO5

BIC12035	DSE I Molecular Basis of Noninfectious	L	Т	Р	С	
	Human Disease Lab (Practical)					
Version 1.0	Contact Hours: 45	0	0	3	2	
Pre-requisites/Exposure	Knowledge of basic Biochemistry and microbiology					
Co-requisites	-					

- 1. To understand the strategy of different type of nutritional disorders
- 2. To provide knowledge of different types of metabolic disorders.
- 3. To understand the strategy of the different types of cancer and multifactorial disorders.
- 4. To provide the concept of different types of protein misfolding disorders.
- 5. To summarize the strategy of different types of monogenic diseases.

Course Outcomes

On completion of this course, the students will be able to

CO1 Identify sample of Kwashiorkor, Marasmus and Obesity.

CO2 Determine Homocystiene.

CO3 Determine glycosylated hemoglobin.

CO4 Assess of CVS using case studies.

CO5 Assess of Diabetes mellitus using case studies.

Catalog Description

A noninfectious disease is a disease that is not transmissible directly from one person to another. ThiscategoryincludeParkinson's disease, autoimmune diseases, strokes, most heart diseases, most cancers, diabetes, chronic kidney disease, osteoarthritis, osteoporosis, Alzheimer's disease, cataracts, and others. NCDs may be chronic or acute. Most are non-infectious, although there are some non-communicable infectious diseases, such as parasitic diseases in which the parasite's life cycle does not include direct host-to-host transmission.

Noninfectious diseases are the leading cause of death globally. In 2012, they caused 68% of all deaths (38 million) up from 60% in 2000. About half were under age 70 and half were women. Risk factors such as a person's background, lifestyle and environment increase the likelihood of certain NCDs. Every year, at least 5 million people die because of tobacco use and about 2.8 million die from being overweight. High cholesterol accounts for roughly 2.6 million deaths and

million die because of high blood pressure. In this paper the molecular mechanism behind these kinds of disease will be analyzed.

1. Anthropometric measurements for normal and high risk individuals and identifications for Kwashiorkor, Marasmus and Obesity [10 Lecture Hours]

- 2. Estimation of homocysteine levels in serum [10 Lecture Hours]
- **3.** Estimation of glycosylated hemoglobin **[10 Lecture Hours]**
- 4. Permanent slides for different types of cancer [10 Lecture Hours]
- 5. Diagnostic profile for assessment of CVS and Diabetes mellitus using case studies.[10 Lecture
- Hours]
- 6. Bone densitometry test demonstration (visit to a nearby clinic) [10 Lecture Hours]

Reference Books

- 1. Textbook of Biochemistry with Clinical Correlations (2011) Devlin, T.M. John Wiley **&**ons, Inc. (New York), ISBN:978-0-4710-28173-4.
- 2. Introduction to Human Physiology (2013) 8th edition; Lauralee Sherwood. Brooks/Cole, Cengage Learning. The World of the cell, 7th edition(2009)
- 3. Genetics (2012) Snustad and Simmons, 4.

Cooper, G.M. and Hausman, R.E.209

5. The Cell: A Molecular Approach. 5th edition. ASM Press & Sunderland, Washington, D.C.; Sinauer Associates, MA.

Modes of Evaluation: Quiz/Assignment/ presentation/ extempore/ Written Examination Examination Scheme:

Components	Mid Term	Attendance	Class Assessment	End Term
Weightage (%)	20	10	30	40

	Mapping between COs and Pos						
	Course Outcomes (COs)	Mapped Program Outcomes					
CO1	Identify sample of Kwashiorkor, Marasmus and Obesity.	PO1, PO2,PO3, PO4 PO5, PO6, PO7,PO8,PO9, PO11					
CO2	Determine Homocystiene.	PO1, PO2,PO3, PO4 PO5, PO6, PO7,PO8,PO9, PO11					
CO3	Determine glycosylated hemoglobin.	PO1, PO2,PO3, PO4 PO5, PO6, PO7,PO8,PO9, PO11					

CO4	Assess of CVS using case studies.	PO1, PO2,PO3, PO4 PO5, PO6, PO7,PO8,PO9, PO11
CO5	Assess of Diabetes mellitus using case studies.	PO1, PO2,PO3, PO4 PO5, PO6, PO7,PO8,PO9, PO11

		Fundamental Knowledge	Critical Thinking	Skill	Technical Knowledge	Logical Thinking	Problem Identification Ability	Analytical Knowledge	Career Goals	Team Work	Sustainable Development to Environment	Development to Society.	Development to Humanity
Course Code	Course Title	PO 1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
BIC12035	DSE I Molecular Basis of Non infectious HumanDisease	3	3	3	3	3	3	3	3	3	-	3	-

1=weakly mapped

2= moderately mapped

3=strongly mapped

Name: Enrolment No:				DAMAS NIVERSITY DE EXCELLENCE
Program:B.ScBi Semester:Odd20	ochemistry	ecularBasisofNo	ninfec	ctiousHumanDiseaseLab Time: 03Hrs. Max. Marks:40
	questions from Sec arrying 10 marks) i		ying 1	10 marks); any Two Questions from
	Sect	tion A (Attempt	any Tl	hree)
1.	Identify the tissu two given slide down thei characteristics ar with noninfection	es (Ap), write r specific ad their relation	5 5	CO1,CO2, CO3,CO4,CO5
2.	Estimate the homocysteine content from the supplied serum sample (Ap),write down the principle, procedure, observation and inference.(An)			CO2
3.	Determine the co glycosylated hen the supplied bloc sample(Ap),write principle, proced observation and	oncentration of noglobin from od e down the ure,	10	CO3
	SECTION B (A Quest	ttempt any Two		·
5.	Viva-Voce (U/A	1 /	10	CO1, CO2,CO3, CO4,CO5
6.	Laboratory Book (U/An/Ap/E	Note v)	10	CO1, CO2,CO3, CO4,CO5

BIC11036	DSE-II Molecular Basis of Infectious	L	Т	Р	C
	Human Disease(Theory)				
Version 1.0	Contact Hours: 60	3	1	0	4
Pre-requisites/Exposure	Knowledge of Biology at 10+2 Level				
Co-requisites	-				

- 1. To gain knowledge about different type of pathogens.
- 2. To gain the knowledge structures of different types of bacterial diseases.
- 3. To acquire the knowledge about the different types of viraldiseases.
- 4. To gain the knowledge about different types of protozoan diseases.
- 5. To gain the khowledge about different types of fungal diseases.

Course Outcomes

On completion of this course, the students will be able to

CO1 Describe the role of different pathogens in causing diseases.

CO2 Understand the molecular basis of bacterial diseases.

CO3 Illustrate the molecular basis of viral diseases.

CO4 Understand the molecular basis of protozoan diseases.

CO5 Illustrate the molecular basis of fungal diseases.

Catalog Description

Infectious disease is a typical category of disease, which occurs inhuman and other mammals due to invading of bacteria, virus, fungus, protozoa and results in different pattern of pathogenesis. This course consists of the detailed studies on molecular basis of these kinds of pathogenesis, that will inspire the students to investigate and design the drug against the different molecular targets of respective pathogens.

Course Content

Unit I Classification of infectious agent

[12 lecture hours]

Bacteria, Viruses, protozoa and fungi.Past and present emerging and re-emerging infectious diseases and pathogens.Source, reservoir and transmission of pathogens, Antigenic shift and antigenic drift. Host parasite relationship, types of infections associated with parasitic organisms. Overview of viral and bacterial pathogenesis.Infection and evasion.

Unit II Overview of diseases caused by bacteria[12 lecture hours]]

Detailed study of tuberculosis: History, causative agent, molecular basis of host specificity, infection and pathogenicity, Diagnostics, Therapeutics, inhibitors and vaccines. Drug resistance and implications on public health.Other bacterial diseases including Typhoid, Diphtheria, Pertussis, Tetanus, Typhoid and Pneumonia.

Unit III Overview of diseases causedbyViruses[12 lecture hours]Detailed study of AIDS, history, causative agent, pathogenesis, Diagnostics, Drugsand
inhibitors.Other viral diseases including hepatitis, influenza, rabies, chikungunya and
polio.

Unit IV Overview of diseases causedbyParasites[12 lecture hours]Detailed study of Malaria, history, causative agents, Vectors, life cycle, Host parasite
interactions,Diagnostics,DrugsandInhibitors,Resistance,Vaccinedevelopment.Other
diseases including leishmaniasis,amoebiasis.[12 lecture hours]

Unit V Overview of diseases caused by other organisms [12 lecture hours] Fungal diseases, General characteristics.Medical importance of major groups, pathogenesis, treatment.

Reference Books

1. Prescott, Harley, Klein's Microbiology (2008) 7th Ed., Willey, J.M., Sherwood, L.M., Woolverton, C.J. McGraw Hill International Edition (New York) ISBN: 978-007-126727.

2. Mandell, Douglas and Bennett.S, Principles and practices of Infectious diseases, 7th edition, Volume, 2. Churchill LivingstoneElsevier

3. Sherris Medical Microbiology: An Introduction to Infectious Diseases by Kenneth J.Ryan, C. George Ray, Publisher:McGraw-Hill

4. Medical Microbiology by Patrick R. Murray, Ken S. Rosenthal, Michael A. Pfaller, Elsevier HealthSciences.

5.Brooks GF, Carroll KC, Butel JS and Morse SA. (2007). Jawetz, Melnick and Adelberg'sMedical Microbiology. 24th edition. McGraw HillPublication

6. Goering R, Dockrell H, Zuckerman M and Wakelin D. (2007). Mims' Medical Microbiology. 4th edition. Elsevier.

Modes of Evaluation: Quiz/Assignment/ presentation/ extempore/ Written Examination Examination Scheme:

Components	Mid Term	Attendance	Class Assessment	End Term
Weightage (%)	20	10	30	40

	Mapping between COs and Pos			
	Course Outcomes (COs)	Mapped Program Outcomes		
CO1	Describe the role of different pathogens in causing diseases.	PO1, PO2, PO3, PO5, PO6, PO7,PO8, PO9		
CO2	Understand the molecular basis of bacterial diseases.	PO1, PO2, PO3, PO5, PO6, PO7,PO8, PO9		
CO3	Illustrate the molecular basis of viral diseases.	PO1, PO2, PO3, PO5, PO6, PO7,PO8, PO9		
CO4	Understand the molecular basis of protozoan diseases.	PO1, PO2, PO3, PO5, PO6, PO7,PO8, PO9		
CO5	Illustrate the molecular basis of fungal diseases.	PO1, PO2, PO3, PO5, PO6, PO7,PO8, PO9		

BIC11036	Course Code	
DSE II Molecular Basis of Infectious Human Disease	Course Title	
ω	PO1	Fundamental Knowledge
ω	PO2	Critical Thinking
ω	PO3	Skill
I	PO4	Technical Knowledge
3	PO5	Logical Thinking
ω	PO6	Problem Identification Ability
ω	PO7	Analytical Knowledge
ω	PO8	Career Goals
ω	PO9	Team Work
ı	PO10	Sustainable Development to Environment
	PO11	Development to Society.
,	PO12	Development to Humanity

1=weakly mapped 2= moderately mapped 3=strongly mapped

Name: Enrolment No	:		ADAMAS UNIVERSITY PURSUE EXCELLENCE				
Program:B.Sc Semester:Odd	Course: BIC11036 –DSE II Molecular Basis of Infectious HumanDisease Program:B.ScBiochemistry Time: 03 Hrs. Semester:Odd2020-21 Max. Marks:40						
	ree questions from Sec a carrying 10 marks). S			any Two Questions from ng 8 marks) .			
	Secti	ion A (Attemptar	ny Three)				
1.	Howtheprocessoftran affected during <i>Corynebacteriumdip</i> phenomenon of vaso endotoxin administra	the infection theriae? Relate th odilation upon	by 2	CO2			
2.	'ELISA is the most p detect the infection of Justify and also men of this method in this	of Dengue virus'- ntion the limitation s context.(Ev)		CO3			
3.	'Loss of Balance of ' proliferation make th prone to leishmanias	ne host system mo	ore 4	CO4			
4.	Why azidothymidine against HIV became treatment? Let, you h serum of a patient with and obtained negative viral particle is prese how can you interpresituation?(An)	obsolete for its have obtained the ith influenza, you a anti H1N1 antibure result, but still ent in his lung tiss retthis	ody 1 3	CO3			
		Attempt any Two tions)					
5.	'Drug designing again more easier than drug protozoa and fungus different types of bac their role in arising of diseases.Define iatro LD ₅₀ .(R)	g designing again '-explain.Name cterial enzymes an of symptoms of ogenic infection an	nd 3 nd 5 2 nd	CO1 CO2 CO4 CO5			
6.	Relate the 'av	vidity hypothesis'	(U) 3	CO1			

	with the signalling mediated by superantigen?Whatdo you mean by 'shut down phase'during initiation of inflammation? Write down the role of leukotrienes(LTB ₄ and LTE) and thromboxane A ₂ during inflammation.Name one steroidal and one nonsteroidal anti- inflammatorydrug.	2 3 2	
7.	Aspergillosis inlungmaybelife threatening discuss at molecular level. What kind of drug will you use to abolish the physiological symptoms and why? What do you mean by A/Puerto Rico/8/34 influenza virus? Infuenza virus is the RNA virus, but not retrovirus- why?	4 3 1 2	CO3 CO5
	SECTION C is Compulsory		
8.	How the protozoa causing leishmaniasis protects itself from altered pH in host environment? What is the novelty of miltefosine over amphotericin B and sodium stibogluconate for the 95% success rate of curing of leishmaniasis. Mention the course and route of administration of miltefosine.	2 4 2	CO4

DSE II Medical Microbiology (Theory)	L	Т	Р	С
Contact Hours: 60	3	1	0	4
Knowledge of Biochemistry				
-				
	Contact Hours: 60	Contact Hours: 60 3	Contact Hours: 603	Contact Hours: 60 3 1 0

- 1. To gain the knowledge about different type of pathogens.
- 2. To gain the knowledge structures of different types of bacterial diseases.
- 3. To acquire the knowledge about the different types of viraldiseases.
- 4. To gain the knowledge about different types of protozoan diseases.
- 5. To gain the knowledge about different types of fungal diseases.

Course Outcomes

On completion of this course, the students will be able to

CO1 Illustrate and discuss Morphology, pathogenesis, symptoms, laboratory diagnosis, preventive measures and chemotherapy of gram positive bacteria.

CO2Explain and discuss Morphology, pathogenesis, symptoms, laboratory diagnosis, preventive measures and chemotherapy of gram negative bacteria.

CO3Elaborateanddiscussdiseasecausedbyviruses.

CO4 Explain and discuss disease caused by Fungal infections.

CO5 Illustrate and discuss disease caused by Protozoal infections.

Catalog Description

Infectious disease is a typical category of disease, which occurs inhuman and other mammals due to invading of bacteria, virus, fungus, protozoa and results in different pattern of pathogenesis. This course consists of the detailed studies on molecular basis of these kinds of pathogenesis, that will inspire the students to investigate and design the drug against the different molecular targets of respective pathogens.

Course Content

1. Normal microflora of human body, nosocomial infections, carriers, septic shock, septicemia, pathogenicity, virulence factors, toxins, biosafety levels. Morphology, pathogenesis, symptoms, laboratory diagnosis, preventive measures and chemotherapy of gram positive bacteria: *S.aureus, S.pyogenes, B.anthracis, C.perferinges, C.tetani, C.botulinum, C.diphtheriaeM.tuberculosis, M. leprae.*[15 LectureHours]

2. Morphology, pathogeneis, symptoms, laboratory diagnosis, preventive measures and chemotherapy caused by gram negative bacteria: *E.coli*, *N. gonorrhoea*, *N. meningitidis*, *P. aeruginosa*, *S. typhi*, *S. dysenteriae*, *Y. pestis*, *B. abortus*, *H. influenzae*, *V. cholerae*, *M. pneumoniae*, *T. pallidum M. pneumoniae*, *Rickettsiaceae*, *Chlamydiae*. **[15 LectureHours]**

3. Diseases caused by viruses- Picornavirus, Orthomyxoviruses, Paramyxoviruses, Rhabdoviruses, Reoviruses, Pox virus, Herpes virus, Papova virus, Retro viruses (including HIV/AIDS) and Hepatitis viruses. **[15 LectureHours]**

4. Fungal and Protozoan infections. Dermatophytoses (*Trichophyton, Microsporun and Epidermophyton*) Subcutaneous infection (*Sporothrix, Cryptococcus*), systemic infection (*Histoplasma, Coccidoides*) and opportunistic fungal infections (*Candidiasis, Aspergillosis*), Gastrointestinal infections (Amoebiasis, Giardiasis), Blood-borne infections (Leishmaniasis, Malaria)[**15 LectureHours**]

Reference Books

1. Prescott, Harley, Klein's Microbiology (2008) 7th Ed., Willey, J.M., Sherwood, L.M., Woolverton, C.J. McGraw Hill International Edition (New York) ISBN: 978-007-126727.

2. Mandell, Douglas and Bennett.S, Principles and practices of Infectious diseases, 7h edition, Volume, 2. Churchill LivingstoneElsevier

3. Sherris Medical Microbiology: An Introduction to Infectious Diseases by Kenneth

J.Ryan, C. George Ray, Publisher:McGraw-Hill

4. Medical Microbiology by Patrick R. Murray, Ken S. Rosenthal, Michael A. Pfaller, Elsevier HealthSciences.

5. Brooks GF, Carroll KC, Butel JS and Morse SA. (2007). Jawetz, Melnick and

Adelberg's Medical Microbiology. 24th edition. McGraw HillPublication

6. Goering R, Dockrell H, Zuckerman M and Wakelin D. (2007). Mims' Medical Microbiology. 4th edition. Elsevier.

Modes of Evaluation: Quiz/Assignment/ presentation/ extempore/ Written Examination Examination Scheme:

Components	Mid Term	Attendance	Class Assessment	End Term
Weightage (%)	20	10	30	40

	Mapping between COs and Pos	
	Course Outcomes (COs)	Mapped Program Outcomes
C01	Illustrate and discuss Morphology, pathogenesis, symptoms, laboratory diagnosis, preventive measures and chemotherapy of gram positive bacteria.	PO1, PO2, PO3, PO5, PO6, PO7,PO8, PO9
CO2	Explain anddiscussMorphology,pathogenesis,symptoms, laboratory diagnosis, preventive measures and chemotherapy of gram negativebacteria.	PO1, PO2, PO3, PO5, PO6, PO7,PO8, PO9
CO3	Elaborate and discuss disease caused by viruses.	PO1, PO2, PO3, PO5, PO6, PO7,PO8, PO9
CO4	Explain and discuss disease caused by Fungal infections.	PO1, PO2, PO3, PO5, PO6, PO7,PO8, PO9
C05	Illustrate and discuss disease caused by Protozoal infections	PO1, PO2, PO3, PO5, PO6, PO7,PO8, PO9

BIC1103 8	Course Code	
C1103 DSE II Medical Microbiology	Course Title	
3		Fundamental Knowledge
3		Critical Thinking
3		Skill
		Technical Knowledge
3		Logical Thinking
3		Problem Identification Ability
3		Analytical Knowledge
3		Career Goals
3		Team Work
	PO10	Sustainable Development to Environment
	PO11	Development to Society.
	PO12	Development to Humanity

Name: Enrolment No		DAMAS UNIVERSITY REDE EXOLLENCE	-				
Course: BIC11038 – DSE II Medical Microbiology Program:B.ScBiochemistry Time: 03Hrs.							
Semester:Odd	12020-21		Max. Marks:40				
1 0	ree questions from Section A (each carryin h carrying 10 marks). Section C is Compute		• –				
	Section A (Attemptany	Three)					
1.	Howtheprocessoftranslationinhostcell is affected during the infection by <i>Corynebacteriumdiptheriae</i> ? Relate the phenomenon of vasodilation upon endotoxinadministration.(R)	2 2	CO2				
2.	'ELISA is the most preferable way to detect the infection of Dengue virus'-Justify and also mention the limitations of this method in this context.(Ap)	3 1	CO3				
3.	[•] Loss of Balance of T _h 1 and T _h 2 cell proliferation make the host system more prone to leishmaniasis'— explain .(Ap)	4	CO4				
4.	Whyazidothymidine(AZT) designed against HIV became obsolete for its treatment? Let, you have obtained the serum of a patient with influenza, you have screened it with anti H1N1 antibody and obtained negative result, but still viral particle is present in his lung tissue-how can you interpret this situation?(U, Ap)	1 3	CO3				

	SECTION B (Attempt any Two Questions)		
5.	'Drug designing against bacteria is much more easier than drug designing against protozoa and fungus'-explain.Name different types of bacterial enzymes and their role in arising of symptoms of diseases.Define iatrogenic infection and LD ₅₀ .(R)	3 5 2	CO1 CO2 CO4 CO5
6.	Relate the 'avidity hypothesis' with the signalling mediated by superantigen?What do you mean by 'shut down phase'during initiation of inflammation? Write down the roleofleukotrienes(LT B ₄ and LTE) and thromboxane A ₂ during inflammation.Name one steroidal and one nonsteroidal anti- inflammatory drug.(R)	3 2 3 2	CO1
7.	Aspergillosis inlungmaybelife threatening discuss at molecular level. What kind of drug will you use to abolish the physiological symptoms and why? What do you mean by A/Puerto Rico/8/34 influenza virus? Infuenza virus is the RNA virus, but not retrovirus- why?(An)	4 3 1 2	CO3 CO5
	SECTION C is Compulsory		
8.	How the protozoa causing leishmaniasis protects itself from altered pH in host environment? What is the novelty of miltefosine over amphotericin B and sodium stibogluconate for the 95% success rate of curing of leishmaniasis. Mention the course and route of administration of miltefosine.(R)	2 4 2	CO4

BIC 11040	DSE II Nutritional Biochemistry (Theory)	L	Т	Р	С
Version 1.0	Contact Hours: 60	3	1	0	4
Pre-requisites/Exposure	Knowledge of Biomolecules				
Co-requisites	-				

- 1. To gain a deeper understanding of nutrition and energymetabolism.
- 2. To acquire the knowledge about the significance of dietary carbohydrates in health.
- 3. To acquire the knowledge about the significance of dietary proteins inhealth.
- 4. To gain the knowledge about significance of dietary fats inhealth.
- 5. To understand the significance about dietary vitamins and minerals inhealth..

Course Outcomes

On completion of this course, the students will be able to

CO1 Explain and categorize basics of Nutrition and Energy Metabolism.

CO2 Discuss importance of dietary carbohydrates in health.

CO3 Illustrate importance of dietary proteins in health.

CO4 Discuss importance of dietary fats in health.

CO5 Explain the importance of dietary vitamin and minerals in health.

Catalog Description

Nutritional biochemistry is one of the academic foundations that make up nutritional sciences, a disciplinethatencompassestheknowledgeofnutrientsandotherfoodcomponentswithemphasis on their range of function and influence on mammalian physiology, health, and behavior. Nutritional biochemistry is a subdiscipline that is made up of the core knowledge, concepts, and methodology related to the chemical properties of nutrients and other dietary constituents and to their biochemical, metabolic, physiological, and epigenetic functions. A primary focus of this paper is the scientific establishment of optimal dietary intakes for every nutrient and food component throughout the lifecycle.

Course Content

- Introduction to Nutrition and Energy Metabolism: Defining Nutrition, role of nutrients. Unit of energy, Biological oxidation of foodstuff. measurement of energy content of food, Physiological energy value of foods, SDA. Measurement of energy expenditure. Direct and Indirect Calorimetry, factors affecting thermogenesis, energy utilization by cells, energy output – Basal and Resting metabolism, physical activity, factors affecting energy input - hunger, appetite, energy balance Energy expenditure in man. Estimating energy requirements, BMR factors Recommended Nutrient Intakes (RNI) and Recommended Dietary Allowances for different age groups. [10 Lecture Hours]
- 2 Dietarycarbohydratesandhealth:Reviewfunctionsofcarbohydrates.Digestion,absorption ,utilization and storage, hormonal regulation of blood glucose. Dietary requirements and source of carbohydrates, Dietary fiber, role of fibrein lipid metabolism, colon function, blood glucose level and GI tract functions. [10 Lecture Hours]
- Dietary lipid and health: Review of classification, sources, functions, digestion, absorption, utilizationandstorage.EssentialFattyAcids;FunctionsofEFA,RDA,-excessanddeficiency of EFA. Lipotropic factors, role of saturated fat, cholesterol, lipoprotein andtriglycerides. Importance of the following: a) Omega fatty acids. Omega 3/ omega 6 ratio
 b) Phospholipids c) Cholesterol in the body d) Mono, Polyunsaturated and Saturated Fatty Acids. Dietary implications of fats and oils, Combination ratios of n6 and n3, MUFA, PUFA and SFA. [10 Lecture Hours]
- 4. Dietary Proteins and health: Review of functions of proteins in the body, Digestion and absorption. Essential and Non-essential amino acids. Amino Acid Availability Antagonism, ToxicityandImbalance,AminoacidSupplementation.Effectsofdeficiency.Foodsourceand RecommendedDietaryAllowancesfordifferentagegroup.Aminoacidpool.NPU, Biological Value, Nitrogen balance. PEM and Kwashiorkor. [10 LectureHours]
- 5 FatandwatersolubleVitamins:VitaminA,C,E,KandDDietarysources,RDA,Adsorption, Distribution, Metabolism and excretion(ADME), Deficiency. Role of Vitamin A as an antioxidant, in Visual cycle, dermatology and immunity. Role of Vitamin K in Gamma carboxylation. Role of Vitamin E as an antioxidant. Extra-skeletal role of Vitamin D and its effect on bone physiology. Hypervitaminosis. Vitamin C role as cofactor in amino acid modifications. Niacin- Metabolic interrelation between tryptophan, Niacin and NAD/ NADP. Vitamin B6-Dietary source, RDA, conversion to Pyridoxal Phosphate. Role in metabolism, Biochemical basis for deficiency symptoms. Vitamin B12 and folate; Dietary source, RDA, absorption, metabolic role Biochemical basis for deficiency symptoms. [10 LectureHours]
- 6 Minerals:Calcium,PhosphorusandIron-Distributioninthebodydigestion,Absorption, Utilization,Transport,Excretion,Balance,Deficiency,Toxicity,Sources,RDA.Calcium: Phosphorus ratio, Role of iron in prevention of anemia. Iodine and iodine cycle. Iodine, Fluoride, Mg, Cu, Zn, Se, Manganese, Chromium, Molybdenum Distribution in the human body, Physiology, Function, deficiency, Toxicity and Sources[4 LectureHours]
- 7. Assessment of Nutritional status: Anthropometric measurements; Z scores, BMI, skinfold, circumference ratios. Biochemical assessment; Basal metabolic panel, Comprehensive metabolic panel, CBC, Urine Analysis, Assessment of Anemia, ROS assessment, GTT and glycosylated Hb, Differential diagnosis of B12 and folate.[3 Lecture Hours]

8 Food and drug interactions and Nutriceuticals: Nutrient interactions affecting ADME of drugs, Alcohol and nutrient deficiency, Anti-depressants, psychoactive drugs and nutrient interactions, Appetite changes with drug intakes and malnutrition. Food as medicine. [3 LectureHours]

Reference Books

- 1. Textbook of Biochemistry with Clinical Correlations (2011) Devlin, T.M. Jdn Wiley & Sons, Inc. (New York), ISBN:978-0-4710-28173-4.
- 2.Nutrition for health, fitness and sport (2013) ;Williams.M.H,Anderson,D.E, Rawson,E.S.McGrawHillinternationaledition.ISBN-978-0-07-131816-7.
- 3.Krause's Food and Nutrition Care process.(2012); Mahan, L.K Strings, S.E, Raymond, J. Elsevier's Publications. ISBN-978-1-4377-2233-8

Modes of Evaluation: Quiz/Assignment/ presentation/ extempore/ Written Examination Examination Scheme:

Components	Mid Term	Attendance	Class Assessment	End Term
Weightage (%)	20	10	30	40

	Mapping between COs and Pos				
	Course Outcomes (COs)	Mapped Program Outcomes			
CO1	Explain and categorize basics of Nutrition and Energy Metabolism.	PO1, PO2, PO3, PO6, PO7, PO8, PO10, PO11			
CO2	Discuss importance of dietary carbohydrates in health.	PO1, PO2, PO3, PO6, PO7, PO8, PO10, PO11			
CO3	Illustrate importance of dietary proteins in health.	PO1, PO2, PO3, PO6, PO7, PO8, PO10, PO11			
CO4	Discuss importance of dietary fats in health.	PO1, PO2, PO3, PO6, PO7, PO8, PO10, PO11			
CO5	Explain the importance of dietary vitamin and minerals in health.	PO1, PO2, PO3, PO6, PO7, PO8, PO10, PO11			

BIC 11040	Course Code	
DSE II Nutritional Biochemistry	Course Title	
ω υ	PO1	Fundamental Knowledge
3	PO2	Critical Thinking
3	PO3	Skill
ı	PO4	Technical Knowledge
I	PO5	Logical Thinking
3	PO6	Problem Identification Ability
3	PO7	Analytical Knowledge
3	PO8	Career Goals
ı	PO9	Team Work
3	PO10	Sustainable Development to Environment
3		Development to Society.
		Development to Humanity

1=weakly mapped 2= moderately mapped 3=strongly mapped

	· ·	N rying 4 marks); pulsory (carryi	Time: 03Hrs. Iax. Marks:40 ; any Two Questions from
1.	Discuss role of Vitamin B12 in the maintenance of healthy erythrocytes.(R)	4	C05
2.	Define biological value of a protein. How it is evaluated?(U)	2 2	CO1 CO3
3.	What are the importance raw vegetables during daily meal?(U)	4	CO2
4.	Explain the different strategy of N balance in human body.(Ap)	4	CO1 CO3
	SECTION B (Attempt any Two Questions)		
5.	How the Vitamin E scavengesthe reactive oxygen species with the help of vitamin C? How vitamin C is involved in collagen biosynthesis?Write down the daily requirement of both of the vitamins.(U)	5 3 2	CO5
6.	What do you mean by Basal Metabolic Rate(BMR)?Writedown itsnormalvalueinhumanmaleand female. Explain thephysiological factors for controlling of BMR.(Ap)	2 2 6	CO1

7.	 7. What do you mean by niacin index? Explain down the role of pyridoxal phosphate in transaminase reaction. Why the value of R.Q. of lipid is less thean dietary carbohydrate?(U) 		CO4 CO5
	SECTION C is Compulsory		
8.	How will you determine the protein score of a fish protein? Explain- "The Specific dynamic action(SDA) value of protein is highest."(Ap)		CO3

BIC 12037	DSE II Molecular Basis of Infectious	L	Т	Р	С
	Human Disease Lab (Practical)				
Version 1.0	Contact Hours: 45	0	0	3	2
Pre-requisites/Exposure	Basic knowledge of Biochemistry and microbiology				
Co-requisites	-				

- 1. To provide the knowledge about different type of microorganisms
- 2. To distinguish between gram positive and gram negative bacteria
- 3. To characterize the acid fastbacteria
- 4. To characterize bacterial spores
- 5. To provide the knowledge about different types diagnostic approach for several diseases

Course Outcomes

On completion of this course, the students will be able to

CO1 Distinguish between different pathogens in causing diseases.

CO2 Distinguish between gram positive and gram negative bacteria.

CO3 Characterize the acid fast bacteria and bacterial endospore.

CO4 Characterize the fungus.

CO5 Understand about detection and diagnosis of infectious disease.

Catalog Description

Infectious disease is a typical category of disease, which occurs in human and other mammals due to invading of bacteria, virus, fungus, protozoa and results in different pattern of pathogenesis. This course consists of the detailed microscopic studies of those disease causing organisms, staining of the microorganism and identification of microbe infected human tissue.

Course Content

- 1. Identification of gram positive and gram negative bacteria by gram staining procedure. (5 Hours)
- 2. Antibiotic susceptibility test by cup plate and paper disc method. (5 Hours)
- 3. Simple staining/ Negative staining. (5 Hours)
- 4. Acid fast staining process for identification of Mycobacterium sp. (5 Hours)
- 5. Endospore & Capsule staining. (10 Hours)
- 6. Isolation and characterization of coliform bacteria from river in selective media (water potability test). (10 Hours)
- 7. Widal test. (10 Hours)
- 8. Permanent Slides of Pathogens. (10 Hours)

Reference Books

1. Prescott, Harley, Klein's Microbiology (2008) 7th Ed., Willey, J.M., Sherwood, L.M., Woolverton, C.J. McGraw Hill International Edition (New York) ISBN: 978-007-126727.

2. Mandell, Douglas and Bennett.S, Principles and practices of Infectious diseases, 7th edition, Volume, 2. Churchill LivingstoneElsevier

3. Sherris Medical Microbiology: An Introduction to Infectious Diseases by Kenneth

J.Ryan, C. George Ray, Publisher:McGraw-Hill

4. Medical Microbiology by Patrick R. Murray, Ken S. Rosenthal, Michael A. Pfaller, Elsevier HealthSciences.

5. Brooks GF, Carroll KC, Butel JS and Morse SA. (2007). Jawetz,

6. Melnick and Adelberg's Medical Microbiology. 24th edition. McGraw Hill

Publication7. Goering R, Dockrell H, Zuckerman M and Wakelin D. (2007). Mims' Medical Microbiology. 4th edition.Elsevier.

Modes of Evaluation: Quiz/Assignment/ presentation/ extempore/ Written Examination Examination Scheme:

Components	Mid Term	Attendance	Class Assessment	End Term
Weightage (%)	20	10	30	40

	Mapping between COs and Pos	
	Course Outcomes (COs)	Mapped Program Outcomes
CO1	distinguish between different pathogens in causing diseases.	PO1, PO2, PO5, PO6, PO7,PO8
CO2	distinguish between gram positive and gram negative bacteria.	PO1, PO2, PO5, PO6, PO7,PO8
CO3	characterize the acid fast bacteria and bacterial endospore	PO1, PO2, PO5, PO6, PO7,PO8
CO4	characterize the fungus	PO1, PO2, PO5,PO6, PO7,PO8
C05	summarize the diagnosis of different infectious disease	PO1, PO2, PO5, PO6,

BIC 12037	Course Code	
DSE II Molecular Basis of Infectious Human Disease	Course Title	
ω	PO1	Fundamental Knowledge
ယ	PO2	Critical Thinking
2	PO3	Skill
ω	PO4	Technical Knowledge
ω	PO5	Logical Thinking
ω	PO6	Problem Identification Ability
ယ	PO7	Analytical Knowledge
ω	PO8	Career Goals
2	PO9	Team Work
-	PO10	Sustainable Development to Environment
-	PO11	Development to Society.
,	PO12	Development to Humanity

1=weakly mapped 2= moderately mapped 3=strongly mapped

Name: Enrolment No:	:		ADA UNIV PURSUE E	MAS ERSITY XCELLENCE	
Program:B.Scl Semester:Odd		lecularBasisof	Infectio		nDiseaseLab Time: 03Hrs. 1x. Marks:40
			rying 10) marks); a	any Two Questions from
Section B (each	carrying 10 marks) is Section	Compulsory. on A (Attempt	anv Th	ree)	
1.	Identify the spectrum two given slides down their characteristics and with infectious distance.	cimen of the (Ap), write specific I their relation	5 5	,	CO2, CO3,CO4,CO5
2.	Perform the Gram procedure with the bacterial sample(A down the principle observation and in	staining e supplied Ap),write e, procedure,	10		CO2
3.	Perform the Cotto staining procedure supplied fungus sample(Ap),write principle, procedu observation and in	n blue e with the down the re,	10		CO4
	SECTION B (A Two Ques	Attempt any			
5.	Viva-Voce (U/An		10	CO1,	CO2,CO3, CO4,CO5
6.	Laboratory Book (U/An/Ap/Ev	Note)	10	C01,	CO2,CO3, CO4,CO5

BIC 12039	DSE II Medical Microbiology Lab	L	Т	Р	C
	(Pactical)				
Version 1.0	Contact Hours: 45	0	0	3	2
Pre-requisites/Exposure	Knowledge of Biochemistry				
Co-requisites	-				

- 1. To provide the knowledge about different type of microorganisms
- 2. To distinguish between gram positive and gram negative bacteria
- 3. To characterize the acid fast bacteria
- 4. To characterize bacterialspores
- 5. To provide the knowledge about different types diagnostic approach for several diseases

Course Outcomes

On completion of this course, the students will be able to

CO1 Identify pathogenic bacteria based on cultural, morphological characteristics

- **CO2 Illustrate** growth curve of a bacterium.
- CO3 Examine temporary mounts of Aspergillus by appropriate staining.
- CO4 Examine the bacteria by Gram staining
- **CO5 Identify** the bacteria by acid fast staining

Catalog Description

Infectious disease is a typical category of disease, which occurs in human and other mammals due to invading of bacteria, virus, fungus, protozoa and results in different pattern of pathogenesis. This course consists of the detailed microscopic studies of those disease causing organisms, staining of the microorganism and identification of microbe infected human tissue.

Course Content

1. Identificationofpathogenicbacteria(anytwo)basedoncultural,morphologicaland biochemical characteristics. [12 LectureHours]

- 2. Growth curve of a bacterium. [12 LectureHours]
- 3. To perform antibacterial testing by Kirby-Bauer method. [12 LectureHours]

4. To prepare temporary mounts of Aspergillus and Candida by appropriate staining. [12 Lecture Hours]

5. Staining methods: Gram's staining permanent slides showing Acid fast staining,Capsule staining and spore staining. [12 Lecture Hours]

Reference Books

1. Prescott, Harley, Klein's Microbiology (2008) 7th Ed., Willey, J.M., Sherwood, L.M., Woolverton, C.J. McGraw Hill International Edition (New York) ISBN: 978-007-126727.

2. Mandell, Douglas and Bennett.S, Principles and practices of Infectious diseases, 7th edition, Volume, 2. Churchill LivingstoneElsevier

3. Sherris Medical Microbiology: An Introduction to Infectious Diseases by Kenneth J.Ryan, C. George Ray, Publisher:McGraw-Hill

4. Medical Microbiology by Patrick R. Murray, Ken S. Rosenthal, Michael A. Pfaller, Elsevier HealthSciences.

5. Brooks GF, Carroll KC, Butel JS and Morse SA. (2007). Jawetz,

6. Melnick and Adelberg's Medical Microbiology. 24th edition. McGraw Hill

Publication7. Goering R, Dockrell H, Zuckerman M and Wakelin D. (2007). Mims' Medical Microbiology. 4th edition.Elsevier.

Modes of Evaluation: Quiz/Assignment/ presentation/ extempore/ Written Examination Examination Scheme:

Components	Mid Term	Attendance	Class Assessment	End Term
Weightage (%)	20	10	30	40

	Mapping between COs and Pos				
	Course Outcomes (COs)	Mapped Program Outcomes			
C01	Identify pathogenic bacteria based on cultural, morphologicalcharacteristics	PO1, PO2, PO5, PO6, PO7,PO8			
CO2	Illustrate growth curve of a bacterium.	PO1, PO2, PO5, PO6, PO7,PO8			
CO3	Examine temporary mounts of Aspergillus by appropriate staining.	PO1, PO2, PO5, PO6, PO7,PO8			

CO4	Examine the bacteria by Gram staining	PO1, PO2, PO5, PO6, PO7,PO8
C05	Identify the bacteria by acid fast staining	PO1, PO2, PO5, PO6, PO7,PO8

		Fundamental Knowledge	Critical Thinking	Skill	Technical Knowledge	Logical Thinking	Problem Identification Ability	Analytical Knowledge	Career Goals	Team Work	Sustainable Development to Environment	Development to Society.	Development to Humanity
Course Code	Course Title	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
BIC 12039	DSE II Medical Microbiology Lab	3	3	-	-	3	3	3	3	-	-	-	-

1=weakly mapped

2= moderately mapped

3=strongly mapped

Name:				
			AD	DAMAS
Enrolment No:	Enrolment No:			NIVERSITY UE EXOLLENCE
			11101116-665	
	Course: BIC 12039–DS	SE II Med	ical N	
Program:B.ScBi				Time: 03Hrs.
Semester:Odd20	20-21			Max. Marks:40
Instructions:				
	questions from Section A	(each car	ving 1	10 marks); any Two Questions from
- ·	arrying 10 marks) is Con			
	Section A	(Attempt	any T	`hree)
1.	Identify the specime	n of the		
	two given slides (Ap			
	down their	specific	5	CO1,CO2, CO3,CO4,CO5
	characteristics and their		5	01,002,003,004,003
	relation with infectiou	S		
	disease.(An)			
2.	Perform the Acid fast s	0		
	procedure with the sup	-	10	CO3
	bacterial sample(Ap),v		10	CO2
	down the principle, pro observation and inferen			
3.	Perform the Cotton blu			
5.	staining procedure with			
	supplied fungus	ii uite	10	
	sample(Ap),write dow	n the	10	CO4
	principle, procedure,			
	observation and inferen	nce.(An)		
	SECTION B (Atten			
	Two Question	,		
5.	Viva-Voce (U/An/Ap/	R)	10	CO1, CO2,CO3, CO4,CO5
6.	Laboratory	Note	10	
	Book(U/An/Ap/Ev)			
				CO1, CO2,CO3, CO4,CO5

BIC12041	DSE II Nutritional Biochemistry Lab(Practical)	L	Т	Р	С	
Version 1.0	Contact Hours: 45	0	0	3	2	
Pre-requisites/Exposure	Basic Knowledge of Biomolecules					
Co-requisites	-					

1. To provide knowledge about analysing the nutrition and energy metabolism. 2. To measure the dietary carbohydrates from food samples.

3. To measure the dietary proteins from food samples.4.

To measure the dietary lipids from food samples.

5. To measure the dietary vitamins and minerals from food samples.

Course Outcomes

On completion of this course, the students will be able to

CO1 Explain assay of vitamin B12/B1..
CO2 Discuss importance of dietary carbohydrates in health.
CO3 Explain assay of serum/ urine MMA
CO4 Identify sample of Kwashiorkor, Marasmus and Obesity
CO5 Explain assay of Vitamin A/E in serum

Catalog Description

Nutritional biochemistry is one of the academic foundations that make up nutritional sciences, a disciplinethatencompassestheknowledgeofnutrientsandotherfoodcomponentswithemphasis on their range of function and influence on mammalian physiology, health, and behavior. Nutritional biochemistry is a subdiscipline that is made up of the core knowledge, concepts, and methodology related to the chemical properties of nutrients and other dietary constituents and to their biochemical, metabolic, physiological, and epigenetic functions. A primary focus of this paper is the qualitative and quantitative analysis some foodcomponents.

Course Content

- **1.** Bioassay for vitamin B12/B1. **[10 LectureHours]**
- 2. Homocystiene estimation. [10 LectureHours]
- 3. Serum/ urine MMA estimation. [10 LectureHours]
- 4. AnthropometricidentificationsforKwashiorkor,MarasmusandObesity.[10 Lecture Hours]
- 5. Determination of oxidative stress: TBARS, antioxidant enzymes in hemolysate.[10 Lecture Hours]
- 6. Vitamin A/E estimation in serum. [5 LectureHours]
- 7. Bone densitometry /bone ultrasound test demonstration (visit to a nearby clinic)[5 Lecture Hours]

Reference Books

- 1. Textbook of Biochemistry with Clinical Correlations (2011) Devlin, T.M. John Wiley **&**ons, Inc. (New York), ISBN:978-0-4710-28173-4.
- 2. Nutrition for health, fitness and sport (2013) ;Williams.M.H,Anderson,D.E, Rawson,E.S. McGraw Hill international edition.ISBN-978-0-07-131816-7.
- 3. Krause's Food and Nutrition Care process.(2012); Mahan, L.K Strings, S.E, Raymond, J. Elsevier's Publications. ISBN-978-1-4377-2233-8.
- 4. The vitamins, Fundamental aspects in Nutrition and Health (2008); G.F. CoombsJr. Elsevier's Publications. ISBN-13- 978-0-12- 183493-7.
- 5. Principles of Nutritional Assessment (2005) Rosalind Gibson. Oxford UniversityPress.

Modes of Evaluation: Quiz/Assignment/ presentation/ extempore/ Written Examination Examination Scheme:

Components	Mid Term	Attendance	Class Assessment	End Term
Weightage (%)	20	10	30	40

Mapping between COs and Pos				
	Course Outcomes (COs)	Mapped Program Outcomes		
CO1	Explain assay of vitamin B12/B1	PO1, PO2, PO3, PO4, PO5,PO6, PO7, PO8, PO10,PO11		

	Discuss importance of dietary carbohydrates in health.	PO1, PO2,
	Discuss importance of dictary caroonyarates in nearm.	PO3, PO4,
CO2		PO5,PO6, PO7,
		PO8 ,
		PO10,PO11
	Explain assay of serum/ urine MMA	PO1, PO2,
		PO3, PO4,
CO3		PO5,PO6, PO7,
		PO8 ,
		PO10,PO11
	Identify sample of Kwashiorkor, Marasmus and Obesity	PO1, PO2,
		PO3, PO4,
CO4		PO5,PO6, PO7,
		PO8,
		PO10,PO11
	Explain assay of Vitamin A/E in serum	PO1, PO2,
		PO3, PO4,
CO5		PO5,PO6, PO7,
		PO8 ,
		PO10,PO11

		Fundamental Knowledge	Critical Thinking	Skill	Technical Knowledge	Logical Thinking	Problem Identification Ability	Analytical Knowledge	Career Goals	Team Work	Sustainable Development to Environment	Development to Society.	Development to Humanity
Course Code	Course Title	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
BIC12041	DSE II Nutritional Biochemistry Lab	3	3	3	3	3	3	3	3	2	3	3	2

1=weakly mapped

2= moderately mapped 3=strongly mapped

Model Question Paper

Name: Enrolment No:			DAMAS NIVERSITY VICE EXCELLENCE
C Program:B.ScBio Semester:Odd202		tional	Biochemistry Lab Time: 03Hrs. Max. Marks:40
Instructions: Attempt any two q 10 marks)isCompu	lsory.		10 marks); Section B (each carrying
	Section A (Attemp	ptany	Two)
1.	Identify the nutrients from the given sample A and B.(Ap) and Write the results along with the experimental procedure in detail.(An)	4 4 2	CO1, CO2, CO3,CO4
2.	Estimate the quantity of Vitamin B1 from the given sample (Ap)and detail the experimental procedure, observation and inference.(An)	4 4 2	CO1
3.	Estimate the quantity of Vitamin A from the given serum sample(Ap) and detail the experimental procedure , observation and inference.(An)	4 4 2	CO5
	SECTION B (Compulsory)		
4.	Viva-Voce(U/An/Ap/R)	10	C01, C02,C03, C04,C05
5.	Laboratory Note Book (U/An/Ap/Ev)	10	CO1, CO2,CO3, CO4,CO5

BIC 14042	Industry Internship (Practical)	L	Τ	Р	C
Version 1.0					2
Pre-requisites/Exposure	Basic knowledge of Biochemistry	I			
Co-requisites					

- 1. To provide students basic idea about work habits and attitudes necessary for job success.
- 2. To illustrate the career alternatives prior to graduation.

3. To develop communication, interpersonal and other critical skills in the job interview process.

4. To provide students the ability to analyze interests and abilities in their field ofstudy.

Course Outcomes

On completion of this course, the students will be able to:

CO1 Develop work habits and attitudes necessary for job success.

CO2 Evaluate career alternatives prior to graduation.

CO3 Develop communication, interpersonal and other critical skills in the job interview process.

CO4 Analyze interests and abilities in their field of study.

CO5 Compile employment contacts leading directly to a full-time job following graduation from college.

Catalog Description

The practical course of 'Industry Internship' will help to develop work habits and attitudes necessary for job success. This course includes comprehensive approach to develop communication, interpersonal and other critical skills in the job interview process. Furthermore, interests and abilities in their field of study will also be illuminated. The practical experience will enablestudentsto enrichinreal-lifescenario.Thetutorialswillenable thestudentswithproblemsolving ability led by the course coordinator. Students will perceive the basic concepts of the subject via exercise and discussions with the coordinator.

CourseContent

Industry Internship (PRACTICALS)

Modes of Evaluation: Quiz/Assignment/ presentation/ extempore/ Written Examination Examination Scheme:

Components	Mid Term	Attendance	Class Assessment	End Term
Weightage (%)	20	10	30	40

Relationship between the Course Outcomes (COs) and Program Outcomes (POs)

	Mapping between COs and POs							
	Course Outcomes (COs)	Mapped Program Outcomes						
CO1	Students will be able to develop work habits and attitudes necessary for job success.	PO1, PO3, PO8						
CO2	Students will be able to evaluate career alternatives prior to graduation.	PO1, PO2						
CO3	Students will be able to develop communication, interpersonal and other critical skills in the job interview process.	PO1, PO3, PO8						
CO4	Students will be able to outline interests and abilities in their field of study.	PO1, PO2, PO3, PO4, PO7						
CO5	Students will be able to compile employment contacts leading directly to a full-time job following graduation from college.	PO3, PO8						

BIC 14042	Code	1=weakly mapped 2= moderately map 3=strongly mapped
Industry Internshi p (THEOR Y)	Course Title	1=weakly mapped 2= moderately mapped 3=strongly mapped
3	РО 1	Fundamental Knowledge
1	РО 2	Critical Thinking
3	РО 3	Skill
2	▷ ▷ ▷ Technical Knowledge	
1	РО 5	Logical Thinking
1	9 PO	Problem Identification Ability
1	РО 7	Analytical Knowledge
3	8 04	Career Goals
	9 04	Team Work
	0 0	Sustainable Development to nvironment
	POI 1	Development to Society.
	PO1 2	Development to Humanity

Semester 6

BIC11043	Genetic Engineering and Biotechnology(Theory)	L	Τ	Р	С
Version 1.0	Contact Hours: 60	3	1	0	4
Pre-requisites/Exposure	Basic Knowledge of Molecular Biology				
Co-requisites	-				

Course Objectives

- 1. To understand Restriction and modification systems, ligation systems in bacteria and viruses and apply their appropriate use in recombinant DNAtechnology.
- 2. To provide knowledge in cloning vectors for prokaryotes and eukaryotes and apply their appropriate use in recombinant DNAtechnology
- 3. To discuss PCR, DNA sequencing and choose their appropriate use in recombinant DNAtechnology.
- 4. To understand recombinant DNA technology in geneexpression.
- 5. To conceptualize structures of porphyrin, their classification, several types of reaction arbiological significance.

Course Outcomes

On completion of this course, the students will be able to

CO1	explainRestrictionandmodificationsystems, ligationsystems in bacteria and
	viruses and apply their appropriate usein
	recombinant DNA technology.
CO2	explain Cloning vectors for prokaryotesand
	eukaryotes and apply their appropriate use in recombinant DNA technology.
CO3	discuss PCR, DNA sequencing and choose their
	appropriate use in recombinant DNAtechnology.
CO4	summarize recombinant DNA technology ingene
	expression.
CO5	build the concept about the structures of porphyrin, their

classification, severaltypesofreactionandbiologicalsignificance

Catalog Description

Students will study the theoretical and applied aspects of basic biotechnology techniques for the study of DNA and proteins. In the laboratory students will apply theory and practical skills from this and previous courses to perform standard molecular biology techniques for the isolation, manipulation and analysis of DNA as well as the expression and purification of protein.

Course Content

1. Unit I Introduction to recombinant DNA technology [6 LectureHours]

Overview of recombinant DNA technology. Restriction and modification systems, restriction endonucleases and other enzymes used in manipulating DNAmolecules, separation of DNA by gel electrophoresis. Extraction and purification of plasmid and bacteriophage DNA.

2. Unit II Cloning vectors for prokaryotes and eukaryotes [6 LectureHours]

Plasmids and bacteriophages as vectors for gene cloning. Cloning vectors based on E.coli

plasmids, pBR322, pUC8, pGEM3Z. Cloning vectors based on M13 and λ bacteriophage.

Vectors for yeast, higher plants and animals.

3. Unit III Joining of DNA fragments [6 LectureHours]

Ligation of DNA molecules. DNA ligase, sticky ends, blunt ends, linkers and

adapters.Synthetic oligonucleotides, synthesis and use.

4. Unit IV Introduction of DNA into cells and selection for recombinants [6 Lecture Hours] Uptake of DNA by cells, preparation of competent cells. Selection for transformed cells. Identification for recombinants - insertional inactivation, blue-white selection. Introduction of phage DNA into bacterial cells. Identification of recombinant phages. Introduction of DNA into animal cells, electroporation.

5. Unit V Methods for clone identification [6 LectureHours]

The problem of selection, direct selection, marker rescue. Gene libraries, identification of a clone from gene library, colony and plaque hybridization probing, methods based on detection of the translation product of the cloned gene.

6. Unit VI Polymerase chain reaction [6 LectureHours]

Fundamentals of polymerase chain reaction, designing primers for PCR. Studying PCR products. Cloning PCR products. Real time PCR.

7. Unit VII DNA sequencing [6 LectureHours]

DNA sequencing by Sanger's method, modifications based on Sanger's method. Automated DNA sequencing. Pyrosequencing.

8. Unit VIII Expression of cloned genes [6 LectureHours]

Vectors for expression of foreign genes in E. coli, cassettes and gene fusions.Challengesin producing recombinant protein in E. coli. Production of recombinant protein by eukaryotic cells. Fusion tags and their role in purification of recombinantproteins.

9.Unit IX Applications of genetic engineering in Biotechnology [12 Lecture Hours] Site-directed mutagenesis and protein engineering. Applications in medicine, production of recombinant pharmaceuticals such as insulin, human growth hormone, factor VIII., Recombinant vaccines. Gene therapy. Applications in agriculture - plant genetic engineering, herbicide resistant crops, problems with genetically modified plants, safety concerns.

Reference Books

1. Gene Cloning and DNA Analysis (2010) 6 thed., Brown, T.A., Wiley-Blackwell publishing (Oxford, UK), ISBN:978-1-4051-8173-0. 2. Principles of Gene Manipulation and Genomics (2006) 7 thed., Primrose, S.B., and Twyman, R. M., Blackwell publishing (Oxford, UK) ISBN:13: 978-1-4051-3544-3.

Modes of Evaluation: Quiz/Assignment/ presentation/ extempore/ Written Examination Examination Scheme:

Components	Mid Term	Attendance	Class Assessment	End Term
Weightage (%)	20	10	30	40

	Mapping between COs and Pos								
	Course Outcomes (COs)	Mapped Program Outcomes							
C01	Explain Restriction and modification systems, ligation systems in bacteria and viruses and apply their appropriate use in recombinant DNA technology.	PO1, PO3							
CO2	Explain Cloning vectors for prokaryotes and eukaryotes and apply their appropriate use in recombinant DNA technology	PO1,PO2, PO3							
C03	Discuss PCR ,DNA sequencing and choose their appropriate use in recombinant DNA technology	PO4, PO6, PO7, PO9							
CO4	Summarize recombinant DNA technology in gene expression.	PO1, PO5, PO12,							
C05	Build the concept about the structures of porphyrin, their classification, several types of reaction and biological significance	PO1, PO6, PO8, PO9, PO12,							

Relationship between the Course Outcomes (COs) and Program Outcomes (POs)

		Fundamental Knowledge	Critical Thinking	Skill	Technical Knowledge	Logical Thinking Ability	Problem Identification	Analytical Knowledge	Career Goals	Team Work	Sustainable Development to Hvironment	Development to Society	. Development to Humanity
Course	Course	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO1	PO1	PO1
Code	Title	1	2	3	4	5	6	7	8	9	0	1	2
BIC110 43	Genetic Engineerin g and Biotechnol ogy	3	1	2	1	1	2	1	1	2	1	-	2

1=weakly mapped

2= moderately mapped

3=strongly mapped

Model Question Paper

Name: Enrolment No:			DURSUE EXCELLENCE					
Course: BIC11043– Genetic Engineering and Biotechnology Program:B.SCBiochemistry Time: 03Hrs.								
Semester:Even 2	2019-20		Max. Marks:40					
1 2	Instructions: Attempt any three questions from Section A (each carrying 4 marks); any four Questions from Section B (each carrying 7 marks).							
Section A (Attemptany Three)								
1.	Which of these rest	riction enzymes	4	CO1				

	produce blunt ends?. (U)		
2.	The RP13 gene of chromosome 17 codes foraprotein(U)	4	CO2
3.	Isoschizomers recognize what? (R)	4	CO4
4.	Restriction enzymes are named for? (U)	4	CO3
	SECTION B (Attempt any for	ur Questions)	
5.	Restriction enzymes are extensively used in molecular biology. Below are the recognition sites of two of these enzymes, BamHI and BcII. a) BamHI, cleaves after the first G. Does cleavage by BamHI result in a 5' or 3' overhang? What is the sequence of this overhang? 5' GGATCC 3' 3' CCTAGG 5' (Ap)	7	CO2
6.	B clI cleaves after the first T. Does cleavage by BclI result in a 5' or 3' overhang? What is the sequence of this overhang? 5' TGATC 3' 3' ACTAGT 5'(Ap)	7	CO4 CO2 CO3
7.	You can ligate the smaller restriction fragment produced in (c, i) to the smaller restriction fragment produced in (c, ii). Write out the sequence of the resulting recombinant fragment	7	CO2
	Millions of children that depend primarily on rice as a food staple become blind each year due to vitamin A deficiency. Humans cannot synthesize vitamin A and must have a supply of vitamin A or vitamin A precursor like beta- carotene in their diet. You want to create a strain of yeast that has the		

	complete beta-carotene pathway so you can easily study the biochemistry of beta-carotene and		
	vitamin A synthesis. You have a yeast strain that has 5 of the required		
	7 enzymes for beta-carotene		
	synthesis. You need to provide these		
	yeast cells with the two missing enzymes, crt1 from bacteria and		
	psy2 from daffodils. To clone the		
	gene encoding crt1 into yeast, you		
	plan to 1. Cut bacterial genomic		
	DNA. 2. Clone it into an appropriate		
	expression vector (vector 1) to create		
	a library. 3. Transform your yeast cells with the library. 4. Select for		
	yeast cells that have obtained any		
	vector. 5. Screen theselected		
	colonies for production of the crt1		
	protein using an antibody.		
8.	a) The cloning vector chosen for this		
	experiment has the gene leu1+, which encodes an enzyme needed to		
	synthesize the amino acid leucine		
	and can be used as a selectable	7	CO5
	marker. To successfully complete		
	step 4 above, what genotype and		
	phenotype would your yeast strain		
0	be prior to transformation?		
9.	List the minimum features, in addition to the leu1+ gene, required		
	in the vector for all steps 1-5		
	outlined above to be successful. For	7	CO3
	any DNA sequence(s) listed, indicate		
	what type of organism it would come		
	from.		

BIC 12044	Genetic Engineering and Biotechnology	L	Т	Р	С
	Lab(Practical)				
Version 1.0	Contact Hours: 45	0	0	3	2
Pre-requisites/Exposure	Basic knowledge in Molecular Biology				
Co-requisites	-				

- 6. To understand the Restriction and modification systems, ligation systems in bacteria and viruses and apply their appropriate use in recombinant DNAtechnology
- 7. To conceptualize about isolation of cloning vectors for prokaryotes and eukaryotes and summarize their appropriate use in recombinant DNAtechnology
- 8. To provide knowledge of PCR, DNA sequencing and choose their appropriate use in recombinant DNAtechnology
- 9. Able to understand recombinant DNA technology in gene expression through bue white screening
- 10. To **demonstrate** and apply RDT in Recombinant vaccines Gene therapy, agriculture- plant genetic engineering, herbicide resistant crops etc.

Course Outcomes

On completion of this course, the students will be able to

CO1	demonstrate the Restriction and systems, ligation systems in bacte		d apply their
	appropriate use in recombinant D	NA technology.	
CO2	develop the concept about isolation		ors for prokaryotes
	and eukaryotesand applytheir	appropriate	use in recombinant
	DNAtechnology.		
CO3	demonstrate PCR, DNA sequen	cing and choose	
	their appropriate use in recombination	ant DNAtechnolog	gy.
CO4	apply recombinant DNA technolog	ogy ingene	
	expression through blue-whitescre		
CO5	demonstrate and apply RDT inR	-	
	vaccines Gene therapy, agricultur	e - plant genetic e	ngineering, herbicide
	resistant crops etc.		

Catalog Description

Construction Management is the overall planning, coordination and control of a project from inceptiontocompletionaimedatmeetingaclient's requirements in order to produce a functionally and financially viable project. This course includes specific activities like defining the responsibilities and management structure of the project management team, planning methods and implementing it in project controls (time and cost), defining roles and

responsibilities of personnel in the organization, equipments and safety measures in construction. All the lectures will be devoted on discussions of basic theories and advanced topics, focusing on practical implementation of knowledge. Classes will be conducted by lecture as well as power pointpresentation, audiovisual virtual labsession as perrequirement. The tutorial swill familiarize the students with practical problem-solving techniques led by the course coordinator. Students will strongly grab the basic concepts of the subject via exercise and discussions with the coordinator.

CourseContent

- 1. Restriction Digestion of DNA. (10 Hours)
- 2. Ligation of DNA. (10 Hours)
- 3. Primer Designing. (10 Hours)
- 4. PCR. (10 Hours)
- 5. Growth Kinetics Study by using Bioreactor. (15 Hours)
- 6. Estimation of Alcohol production using Bioreactor. (15 Hours)

Reference Book:

- 1. Gene Cloning and DNA Analysis (2010) 6 thed., Brown, T.A., Wiley-Blackwell publishing (Oxford, UK), ISBN:978-1-4051-8173-0.
- 2. Gene Cloning Manual: Sambruk and Russell
- 3. Principles of Gene Manipulation and Genomics (2006) 7 thed., Primrose,

S.B., and Twyman, R. M., Blackwell publishing (Oxford, UK) ISBN:13: 978-1-4051-3544-3.

Modes of Evaluation: Quiz/Assignment/ presentation/ extempore/ Written Examination Examination Scheme:

Components	Mid Term	Attendance	Class Assessment	End Term
Weightage (%)	20	10	30	40

Relationship between the Course Outcomes (COs) and Program Outcomes (POs)

Mapping between COs and Pos			
	Course Outcomes (COs)	Mapped Program Outcomes	
CO1	Demonstrate the Restriction and modification systems, ligation systems in bacteria and viruses and apply their appropriate use in recombinant DNA technology	PO1, PO2	

CO2	Develop the concept about isolation of cloning vectors for prokaryotes and eukaryotes and apply their appropriate use in recombinant DNA technology	PO1,PO2, PO3,
CO3	Demonstrate PCR, DNA sequencing and choose their appropriate use in recombinant DNA technology	PO1, PO2, PO3, PO4
CO4	Apply recombinant DNA technology in gene expression through blue-white screening	PO1, PO5, PO10
C05	Demonstrate and apply RDT in Recombinant vaccines Gene therapy, agriculture - plant genetic engineering, herbicide resistant crops etc	PO1, PO6, PO8

BIC1204 4	Course Code	
Genetic Engineerin g and Biotechnol ogy Lab	Course Title	
ω	РО 1	Fundamental Knowledge
3	РО 2	Critical Thinking
2	PO 3	Skill
1	PO 4	Technical Knowledge
1	PO 5	Logical Thinking Ability
1	6 6	Problem Identification
ı	PO 7	Analytical Knowledge
1	PO 8	Career Goals
1	PO 9	Team Work
-	PO1 0	Sustainable Development to
1	PO1 1	Development to Society
,	PO1 2	. Development to Humanity

1=weakly mapped 2= moderately mapped 3=strongly mapped

Model Question Paper

Name: Enrolment N	0:	ADAM UNIVERS					
Program:B.S Semester:Eve Instructions:	Course: BIC 12044– Genetic Engineering and BiotechnologyLabProgram:B.SCBiochemistryTime: 03Hrs.Semester:Even 2019-20Max. Marks:40Instructions:						
Attempt all qu	lestions						
1	Isolate the Genomic DNA from bacterial cell.(Ap)	10	СО3				
2	Estimate the DNA concentration by spectrophotometer.(An)	10	CO4				
3.	Note Book	10	CO1 CO2 CO3				
4	Viva Voce	10	CO1, CO2, CO3				

BIC 11045	Hormones: Biochemistry and Function (Theory)	L	Т	Р	С
Version 1.0	Contact Hours: 60	3	1	0	4
Pre-requisites/Exposure	Knowledge of Biology at 10+2 level				
Co-requisites	-				

To provide a deeper understanding about the organization of endocrine system of human body. 1.To acquire the knowledge relation between neural and endocrinesystem.

2. To acquire the knowledge about the establishment of physiological homeostasis by hormones.

3. To provide the knowledge about biochemical basis of regulation of hormone secretion.

4. To understand the biochemical disorder due to hypo and hyper secretion ofhormones. .

Course Outcomes

On completion of this course, the students will be able to

CO1 Explain the process of endocrine system and Functions of hormones and illustrate their regulation.

CO2 Discuss hormone mediated signalling mechanisms and illustrate their application in modern biology.

CO3 Explain the structure of different endocrine glands and hormones secretes by them.

CO4 Discuss the biosynthesis and mechanism of their action of different hormones.

CO5 Discuss the disorders related to hyper and hypo secretion of hormones.

Catalog Description

Endocrinologyisabranchofbiologyandmedicinedealingwiththeendocrinesystem, its diseases, and its specific secretions known as hormones. It is also concerned with the integration of developmental events proliferation, growth, and differentiation, and the psychological or behavioral activities of metabolism, growth and development, tissue function, sleep, digestion, respiration, excretion, mood, stress, lactation, movement, reproduction, and sensory perception caused by hormones. Specializations include behavioral endocrinologyand comparative endocrinology. The endocrine system consists of several glands, all in different parts of the body, that secrete hormones directly into the blood rather than into a duct system. Therefore, endocrine glands are regarded as ductless glands. Hormones have many different functions and modes of action; one hormone may have several effects on different target organs, and, conversely, one target organ may be affected by more than one hormone. So to conceptualize the coordination between the physiological functions mediated by hormones by their special biochemical features is the goal of thispaper.

Course Content

- 1. Introduction to endocrinology: Functions of hormones and their regulation.Chemical signaling endocrine, paracrine, autocrine, intracrine and neuroendocrine mechanisms.Chemicalclassificationofhormones,transportofhormonesinthecirculationand their half-lives.Hormonetherapy.General introduction to Endocrine methodology.[15 Lecture Hours]
- Hormone mediated signaling: Hormone receptors extracellular and intracellular.Receptor

 hormone binding, Scatchardanalysis. G protein coupled receptors, G proteins, second
 messengers cAMP, cGMP, IP3, DAG, Ca2+, NO. Effector systems adenylcyclase,

guanylcyclase, PDE, PLC.Protein kinases (PKA, PKB, PKC, PKG).Receptor tyrosine kinases - EGF, insulin, erythropoietin receptor; ras - MAP kinase cascade, JAK - STAT pathway. Steroid hormone/ thyroid hormone receptor mediated gene regulation. Receptor regulation and cross talk.Growth factors: PDGF, EGF, IGF-II, and erythropoietin. .[15 Lecture Hours]

- 3. Hypothalamic, pituitary and thyroid hormones. Hypothalamic pituitary axis. Study the physiological and biochemical actions of hypothalamic hormones, pituitary hormones GH, prolactin, TSH, LH, FSH, POMC peptide family, oxytocin and vasopressin, feedback regulation cycle. Endocrine disorders gigantism, acromegaly, dwarfs, pigmies and diabetes insipidus. Thyroidhormone: Thyroid gland. Biosynthesis of thyroid hormone and its regulation; its physiological and biochemical action. Pathophysiology Goiter, Graves disease, cretinism, myxedema, Hashimato's disease. Hormones regulating Ca2+homeostasis: PTH, Vitamin D and calcitonin. Mechanism of Ca2+ regulation and pathways involving bone, skin, liver, gut and kidneys. Pathophysiology rickets, osteomalacia, osteoporosis. .[15 LectureHours]
- 4 Pancreatic, GI tract, adrenal and reproductive hormones: Regulation of release of insulin, glucagon, gastrin, secretin, CCK, GIP, adipolectin, leptin and ghrelin.Summaryof hormone metabolite control of GI function.Physiological and biochemical action. Pathophysiology diabetes type I and type II. Aldosterone, renin angiotensin system, cortisol, epinephrine and norepinephrine. Fight or flight response, stress response. Pathophysiology Addison's disease, Conn's syndrome, Cushing syndrome. Reproductive hormones: Male and female sex hormones. Interplayof hormones during reproductive cycle, pregnancy, parturition and lactation. Hormone based contraception. .[15 LectureHours]

Reference Books

1. Lehninger: Principles of Biochemistry (2013) 6th ed., Nelson, D.L. and Cox, M.M. W.H.Freeman& Company (NewYork), ISBN:13: 978-1-4641-0962-1 / ISBN:10-14641-0962-1.

2. Vander's Human Physiology (2008) 11th ed., Widmaier, E.P., Raff, H. and Strang, K.T.McGraw Hill International Publications, ISBN:978-0-07-128366-3.

3. Endocrinology (2007) 6th ed., Hadley, M.C. and Levine, J.E. Pearson Education (New Delhi), Inc. ISBN:978-81-317-2610-5.

4. Fundamental of Anatomy and Physiology (2009), 8 thed., Martini, F.H. and Nath, J.L., Pearson Publications (San Francisco), ISBN: 10:0-321-53910-9 / ISBN: 13:978-0321-53910-6.

Modes of Evaluation: Quiz/Assignment/ presentation/ extempore/ Written Examination Examination Scheme:

Components	Mid Term	Attendance	Class Assessment	End Term
Weightage (%)	20	10	30	40

	Mapping between COs and Pos						
	Course Outcomes (COs)	Mapped Program Outcomes					
CO1	Student will be able to explain the process of endocrine system and Functions of hormones and illustrate their regulation.	PO1, PO2, PO3, PO4,PO5, PO6, PO7, PO8, PO12					
CO2	Student will be able to discuss Hormone mediated signalling mechanisms and illustrate their application in modern biology.	PO1, PO2, PO3, PO4,PO5, PO6, PO7, PO8, PO12					
CO3	Student will be able to explain the structure of different endocrine glands and hormones secretes by them.	PO1, PO2, PO3, PO4,PO5, PO6, PO7, PO8, PO12					
CO4	Student will be able to discuss the biosynthesis and mechanism of their action of different hormones.	PO1, PO2, PO3, PO4,PO5, PO6, PO7, PO8, PO12					
CO5	Student will be able to discuss the disorders related to hyper and hypo secretion of hormones.	PO1, PO2, PO3, PO4,PO5, PO6, PO7, PO8, PO12					

Relationshi	p between the	Course	Outcomes	(COs)) and	Program	Outcomes	(POs)
Relationship	p between the	Course	Outcomes	(COS)	<i>j</i> anu	Trogram	Outcomes	(I US)

		Fundamental Knowledge	Critical Thinking	Skill	Technical Knowledge	Logical Thinking	Problem Identification Ability	Analytical Knowledge	Career Goals	Team Work	Sustainable Development to Environment	Development to Society.	Development to Humanity
Course Code	Course Title	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
BIC 11045	Hormones: Biochemistry and Function	3	3	3	3	3	3	3	3	-	-	-	3

1=weakly mapped 2= moderately mapped 3=strongly mapped

Model Question Paper

Name:				
Enrolment No:			ADAMAS	
			PURSUE EXCELLENCE	
	Course: BIC 12045 Ho	rmones: Biocl	hemistry and F	unction Time: 03Hrs.
Program:B.ScE Semester:Even			Ma	inne: 05Hrs. ix. Marks: 40
Instructions:				
	e questions from Sectio	n A (each carr	ying 4 marks); a	any Two Questions from
Section B (each	carrying 10 marks). Sec	tion C is Com	pulsory (carryin	g 8 marks).
	Section	A (Attemptan	y Three)	
1.	Write down the "Two			
	of estrogen biosy placenta is dependent of	nthesis. Wh	· <u>2</u>	CO1
	cortex of mother and f		2	CO4
	estrogen biosynthesis?			
2.	Find out the similaritien mechanism of actions			
	and glucagon with spec		0	
	induction of glycogene		4	CO3
	FSH, LH and hCGbelo	ongs to the sam	e	
3.	family?(AP) Write down the roles o	f the STAR an	4	
5.			'n	
	steroidogenesis?	How th	()	CO4
	counteraction of growt insulin wasestablished			
4.	Derive the numerical f	()		
	ratio of the affinity of l		S	
	competitive agonist wi	-		
	receptor molecule, whe hormone and antagonis		4	CO2
	in the medium and con	-		
	each other for the bind			
	receptor.(AP)	T		
	SECTION B (Atten Question			
5.	How adrenaline exerts	,		
	chronotropic and ionot	-	3	CO2
	through its β 1 receptor	-	¹ 5	CO5
	hydrolysis is a major fa regulation of blood pre		2	CO1
	hormones produced by	-		

	What do you mean by CRE?(R)		
6.	How the rhythm of oestrogen and progesterone is altered throughout the monthly ovarian and uterine cycle of human female?(explain with the events). Why only one ovum is fertilized in one month? Oestorgenis also important in male for regulated gonad hormone secretion-justify. Write down the normal level of hCG during pregnancy.(U)	5 2 2 1	CO2 CO3 CO5
7.	 How the Ca homeostasis is established in human body by counteraction of two different hormones?(explain). Explain the V1 and V2 receptor mediated actions of antidiuretic hormone(ADH)? How autoimmune diabetes mellitus occurs? How endogenous analgesics are formed during processing of hormones?(R) 	3 4 1 2	CO1 CO2 CO3 CO5
	SECTION C is Compulsory		
8.	 How the blood glucose homeostasis is established in human body by counteraction of different hormones? If the Na-K balance is disturbed in blood plasma, then agonist of which hormone you will apply and why?(U) 	4 4	CO3 CO2 CO5

BIC 12046	Hormones Biochemistry and Function Lab (Practical)	L	Т	Р	С	
Version 1.0	Contact Hours: 45	0	0	3	2	
Pre-requisites/Exposure	Knowledge in Biochemistry					
Co-requisites	-					

1. To observe the microscopic organization of endocrine system of human body.

2. To analyze relation between neural and endocrine system.

- 3. To analyze the establishment of physiological homeostasis by hormones.
- 4. To examine biochemical basis of regulation of hormone secretion.
- 5. To identify the cause of the biochemical disorder due to hypo and hyper secretion of

hormones.

Course Outcomes

On completion of this course, the students will be able to

- **CO1 Explain** serum glucose level and analyse the data.
- **CO2 Examine** serum Ca2+ level and analyse the data.

CO3 Illustrate serum T4 level and analyse the data.

CO4 Examine of serum electrolytes level and analyse the data.

CO5 Case study of different disorders and categorize them accordingly.

Catalog Description

Endocrinologyisabranchofbiologyandmedicinedealingwiththeendocrinesystem, its diseases, and its specific secretions known as hormones. It is also concerned with the integration of developmental events proliferation, growth, and differentiation, and the psychological or behavioral activities of metabolism, growth and development, tissue function, sleep, digestion, respiration, excretion, mood, stress, lactation, movement, reproduction, and sensory perception caused by hormones. Specializations include behavioral endocrinologyand comparative endocrinology. The endocrine system consists of several glands, all in different parts of the body, that secrete hormones directly into the blood rather than into a duct system. Therefore, endocrine glands are regarded as ductless glands. Hormones have many different functions and modes of action; one hormone may have several effects on different target organs, and, conversely, one target organ may be affected by more than one hormone. So to analyze the coordination between thephysiologicalfunctionsmediatedbyhormonesbytheirspecialbiochemicalfeaturesisthegoal of thispaper.

Course Content

- 1. Glucose Tolerance Test.[5Hours]
- **2.** Pregnancy Test.[5Hours]
- **3.** Ovulation Test.[5Hours]
- 4. In silico Analysis of Hormone-Receptor Interaction.[5Hours]
- 5. Estimation of serum Ca2+. [10 LectureHours]
- 6. Estimation of serum T4. [15 LectureHours]
- 7. Estimation of serum electrolytes. [15 LectureHours]

Case studies.

Reference Books

1. Vander's Human Physiology (2008) 11 thed., Widmaier, E.P., Raff, H. and Strang, K.T., McGraw Hill International Publications (New York), ISBN:978-0-07-128366-3.

2. Harper's Biochemistry (2012) 29 thed., Murray, R.K., Granner, D.K., Mayes and P.A.,

Rodwell, V.W., Lange Medical Books/McGraw Hill.ISBN:978-0-07-176-576-3.

3. Textbook of Medical Physiology (2011) 10 thed., Guyton, A.C. and Hall, J.E., Reed Elseviers India Pvt. Ltd. (New Delhi). ISBN:978-1-4160-4574-8.

4. Fundamental of Anatomy and Physiology (2009), 8 thed., Martini, F.H. and Nath, J.L., Pearson Publications (San Francisco), ISBN: 10:0-321-53910-9 / ISBN: 13:978-0321-53910-6. Chemistry of Nucleic acids, Adams.

Modes of Evaluation: Quiz/Assignment/ presentation/ extempore/ Written Examination Examination Scheme:

Components	Mid Term	Attendance	Class Assessment	End Term
Weightage (%)	20	10	30	40

Relationship between the Course Outcomes (COs) and Program Outcomes (POs)

	Mapping between COs and POs					
	Course Outcomes (COs)	Mapped Program Outcomes				
CO1	Explain serum glucose level and analyse the data.	PO1, PO2, PO3,PO5, PO6,PO7, PO8, PO11				
CO2	Examine serum Ca2+ level and analyse the data.	PO1, PO2, PO3, PO5, PO6, PO7, PO8, PO11				
CO3	Illustrate serum T4 level and analyse the data.	PO1, PO2, PO3, PO5, PO6, PO7, PO8, PO11				

CO4	Examine of serum electrolytes level and analyse the data.	PO1, PO2, PO3, PO5, PO6, PO7, PO8, PO11
C05	Case study of different disorders and categorize them accordingly.	PO1, PO2, PO3, PO5, PO6, PO7, PO8, PO11

Course	Course Title	Fundamental Knowledge	Critical Thinking	Skill	Technical Knowledge	Logical Thinking	Problem Identification Ability	Analytical Knowledge	Career Goals	Team Work	Sustainable Development to Environment		Development to Humanity
Code	Course Title	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
BIC 12046	Hormones Biochemistry and Function Lab	3	3	3	-	3	3	3	3	-	-	3	-

1=weakly mapped

2= moderately mapped

3=strongly mapped

Model Question Paper

Enrolment No:

Course: BIC BIC 12046 –:Hormones Biochemistry and FunctionLab Program:B.ScBiochemistryTime: 03Hrs.Semester:Even 2020-21Max. Marks:40

Instructions:

Attempt any two questions from Section A (each carrying 10 marks); any Two Questions from Section B (each carrying 10 marks) is Compulsory.

	Section A (Attempta	ny Th	ree)
1.	Stain with haematoxylin-eosin and Identify the specimen of the two given slides (Ap), write down their specific characteristics (An)	5 5	CO5
2.	Estimate the Ca from the supplied serum sample using the standard curve of Ca with calceinreagent(Ap),write down the principle, procedure, observation and inference.(An)	10	CO2
3.	Estimate the glucose content from the supplied plasma sample (Ap),write down the principle, procedure, observation and inference.(An)	10	CO1
	SECTION B (Attempt any Two Questions)		
5.	Viva-Voce (U/An/Ap/R)	10	CO1, CO2,CO3, CO4,CO5
6.	Laboratory Note Book(U/An/Ap/Ev)	10	CO1, CO2,CO3, CO4,CO5

BIC11047	DSE III PLANT BIOCHEMISTRY	L	Τ	Р	С
	(theory)				
Version 1.0	Contact Hours - 60	3	1	0	4
Pre-requisites/Exposure	Basic Knowledge of Biochemistry &Botany	I			
Co-requisites					

- 1. To provide students with hands-on training in the field of plant biochemistry.
- 1. To provide in depth knowledge of modern plant scienceresearch.
- 2. Students will become more proficient with different practical applications of plant biochemistry (e.g.plant tissueculture).

Course Outcomes

On completion of this course, the students will be able to

CO1 Explain the basic principles of plant biochemistry.

CO2 Illustrate fundamentals of plant physiological processes like germination, senescence etc.

CO3 Demonstrate different assay systems of plant enzymes.

CO4 Demonstrate tissue culture techniques.

CO5 Summarize the knowledge of plant biochemistry to understand important physiological processes like photosynthesis.

Catalog Description

The discipline specific course "plant biochemistry lab" is a practical paper which has been designed to provide the knowledge of different aspects of plant biochemistry. It will provide understanding of important physiological processes in plants. Students will be able to understand of tissue culture and other techniques and will practice hands-on all of them.. All the lectures will be devoted on discussions of basic theories and advanced topics, focusing on practical implementation of knowledge. Classes will be conducted by lecture as well as power point presentation, audio visual virtual lab session as per requirement. The tutorials will familiarize the students with practical problem-solving techniquesled by the course coordinator. Students will strongly grab the basic concepts of the subject via exercise and discussions with the coordinator.

Course Content

Unit I Introduction to Plant cell structure

Plasma membrane, Vacuole and tonoplast membrane, cell wall, plastids and peroxisomes.

Unit II Photosynthesis and Carbon assimilation

Structure of PSI and PSII complexes, Light reaction, Cyclic and non cyclic photophosphorylation, Calvin cycle and regulation; C4 cycle and Crassulacean acid metabolism (CAM), Photorespiration.

Unit III Respiration

Overview of glycolysis, Alternative reactions of glycolysis, Regulation of plant glycolysis, Translocation of metabolites across mitochondrial membrane, TCA cycle, Alternative NAD(P)H oxidative pathways; Cyanide resistant respiration.

Unit IV Nitrogen metabolism

Biological Nitrogen fixation by free living and in symbiotic association, structure and function of enzyme Nitrogenase. Nitrate assimilation: Nitrate and Nitrite reductase. Primary and secondary ammonia assimilation in plants; ammonia assimilation by Glutamine synthetase- glutamine oxoglutarate amino transferase (GS-GOGAT) pathway. Seed storage proteins in legumes and cereals.

Unit V Regulation of plant growth

Introduction to plant hormones and their effect on plant growth and development, Regulation of plant morphogenetic processes by light.

Unit VI Secondary metabolites

Antioxidants.Representatives alkaloid group and their amino acid precursors, function of alkaloids, Examples of major phenolic groups; simple phenylpropanoids, Coumarins, Benzoic acid derivatives, flavonoids, tannins and lignin, biological role of plant phenolics, Classification of terpenoids and representative examples from each class, biological functions of terpenoids.

Unit VI Plant tissue culture

Cell and tissue culture techniques, types of cultures: organ and explants culture, callus culture, cell suspension culture and protoplast culture. Plant regeneration pathways: organogenesis and somatic embryogenesis. Applications of cell and tissue culture and somoclonal variation.

SUGGESTED READINGS

1.Plant Biochemistry (2008), Caroline Bowsher, Martin steer, Alyson Tobin, Garland science ISBN978-0-8153-4121-5

2. BiochemistryandmolecularBiologyofplant-Buchanan. (2005)1edition. Publisher: I

Modes of Evaluation: Quiz/Assignment/ presentation/ extempore/ Written Examination Examination Scheme:

Components	Mid Term	Attendance	Class Assessment	End Term
Weightage (%)	20	10	30	40

	Mapping between COs and Pos				
	Course Outcomes (COs)	Mapped Program Outcomes			
CO1	Explain the basic principles of plant biochemistry.	PO1, PO2, PO3			
CO2	Illustrate fundamentals of plant physiological processes like germination, senescence etc.	PO1, PO10, PO11			
CO3	Demonstrate different assay systems of plant enzymes.	PO1, PO2, PO3, PO4, PO8			
CO4	Demonstrate tissue culture techniques.	PO1, PO3. PO6, PO8			
CO5	Summarize the knowledge of plant biochemistry to understand important physiological processes like photosynthesis.	PO1, PO4, PO8,			

Relationship between the Course Outcomes (COs) and Program Outcomes (POs)

100

BIC11047	Course Code	
DSE III PLANT BIOCHEMISTRY	Course Title	
ω	PO1	Fundamental Knowledge
2	PO2	Critical Thinking
3	PO3	Skill
2	PO4	Technical Knowledge
1	PO5	Logical Thinking
1	PO6	Problem Identification Ability
	PO7	Analytical Knowledge
ω	PO8	Career Goals
	PO9	Team Work
	PO10	Sustainable Development to Environment
-	PO11	Development to Society.
	PO12	Development to Humanity

1=weakly mapped 2= moderately mapped 3=strongly mapped

Model Question Paper

ADAMAS UNIVERSITY PURSUE EXCELLENCE	ADAMAS UNIVERSITY MID-SEMESTER EXAMINATION MARCH 2022 (Academic Session: 2021 – 22)			
Name of the Program:	ame of the Program: BSc. Biochemistry		VI	
Paper Title:	PLANT BIOCHEMISTRY	Paper Code:	BIC11047	
Maximum Marks:	20	Time Duration:	2 Hrs	
Total No. of Questions:	3	Total No of Pages:	1	
(Any other information for the student may be mentioned here)	 At top sheet, clearly mention Name, Univ. Roll No., Enrolment No., Paper Name & Code, Date of Exam. All parts of a Question should be answered consecutively. Each Answer should start from a fresh page. Assumptions made if any, should be stated clearly at the beginning of your answer. 			

	Group A		
Sl No:	Answer allthe Questions (2 x 5 = 10	J) Knowledge Level	СО
1	a) During day time, CAM plants procure CO2 for	Apply	CO2
	photosynthesis from which compound?		
	b) Summarize Hill reactions and its significance.		
	c) Maximum photosynthesis in green plants takes place		
	in which light?		
	d) Draw the diagram of cyclic photophosphorylation.(1+2+1+1)		
2	Illustrate the role of vacuoles in plant cells. What are tonoplast, plasmodesmata and lignin? (2+3)	Remember	CO1
	Group B	I	I
	Answer allthe Questions (1 x 10 = 1	0)	
3	a) Discuss the reactions of Calvin cycle.	Understanding,	CO3, CO4
	b) Illustrate the role of PS I & PS II in photosynthesis.	Apply	
	(c) What are C4 plants? Draw the diagram of CAM pathway.(4+3+3)		

BIC12048	DSE III PLANT BIOCHEMISTRY LAB (PRACTICAL)	L	Т	Р	C
Version 1.0	Contact Hours - 45	0	0	3	2
Pre-requisites/Exposure	Basic Knowledge of Biochemistry &Botany				<u> </u>
Co-requisites					

- 3. To provide students with hands-on training in the field of plant biochemistry.
- 1. To provide in depth knowledge of modern plant scienceresearch.
- 4. Students will become more proficient with different practical applications of plant biochemistry (e.g.plant tissueculture).

Course Outcomes

On completion of this course, the students will be able to

CO1 Explain the basic principles of plant biochemistry.

CO2 Illustrate fundamentals of plant physiological processes like germination, senescence etc.

CO3 Demonstrate different assay systems of plant enzymes.

CO4 Demonstrate tissue culture techniques.

CO5 Summarize the knowledge of plant biochemistry to understand important physiological processes like photosynthesis.

Catalog Description

The discipline specific course "plant biochemistry lab" is a practical paper which has been designed to provide the knowledge of different aspects of plant biochemistry. It will provide understanding of important physiological processes in plants. Students will be able to understand of tissue culture and other techniques and will practice hands-on all of them.. All the lectures will be devoted on discussions of basic theories and advanced topics, focusing on practical implementation of knowledge. Classes will be conducted by lecture as well as power point presentation, audio visual virtual lab session as per requirement. The tutorials will familiarize the students with practical problem-solving techniquesled by the course coordinator. Students will strongly grab the basic concepts of the subject via exercise and discussions with the coordinator.

Course Content

PLANT BIOCHEMISTRY LAB

- 1. Qualitative/Quantitative analysis of carbohydrates from plant sources. [5 Hours]
- 2. Isolation of photosynthetic pigment from plant leaves and their separation by TLC. [5 Hours]
- 3 Qualitative/Quantitative analysis of proteins from plant sources [5 Hours]
- 4. Qualitative/Quantitative analysis of lipids from plant sources [5 Hours]
- 5. Estimation of secondary metabolites from plant sources. [10 Hours]
- 6. Extraction of caffeine from tea leaves. [10 Hours]
- 7. Biochemical analysis of seeds. [10 Hours]
- 8. Basics of Plant Tissue Culture (PTC). [10 Hours]

SUGGESTED READINGS

3. Plant Biochemistry (2008), Caroline Bowsher, Martin steer, Alyson Tobin, Garland science ISBN978-0-8153-4121-5

4. BiochemistryandmolecularBiologyofplant-Buchanan. (2005)1edition. Publisher: I

Modes of Evaluation: Quiz/Assignment/ presentation/ extempore/ Written Examination Examination Scheme:

Components	Mid Term	Attendance	Class Assessment	End Term
Weightage (%)	20	10	30	40

	Mapping between COs and Pos				
	Course Outcomes (COs)	Mapped Program Outcomes			
CO1	Explain the basic principles of plant biochemistry.	PO1, PO2, PO3			
CO2	Illustrate fundamentals of plant physiological processes like germination, senescence etc.	PO1, PO10, PO11			
CO3	Demonstrate different assay systems of plant enzymes.	PO1, PO2, PO3, PO4, PO8			
CO4	Demonstrate tissue culture techniques.	PO1, PO3. PO6, PO8			
C05	Summarize the knowledge of plant biochemistry to understand important physiological processes like photosynthesis.	PO1, PO4, PO8,			

Relationship between the Course Outcomes (COs) and Program Outcomes (POs)

BIC12048	Course Code	
DSE III PLANT BIOCHEMISTRY LAB (PRACTICAL)	Course Title	
ယ	PO1	Fundamental Knowledge
2	PO2	Critical Thinking
J	PO3	Skill
2	PO4	Technical Knowledge
ı	PO5	Logical Thinking
1	PO6	Problem Identification Ability
ı	PO7	Analytical Knowledge
s.	PO8	Career Goals
I	PO9	Team Work
-	PO10	Sustainable Development to Environment
	PO11	Development to Society.
1	PO12	Development to Humanity

1=weakly mapped 2= moderately mapped 3=strongly mapped

Model Question Paper

Name:

Enrolment No:

Course: BIC12048 – DSE III PLANT BIOCHEMISTRY LAB (PRACTICAL)Program:B.Sc.BiochemistryTime: 03 Hrs.Semester:Even 2019-20Max. Marks:40

Instructions:

Attempt any **two** questions from **Section A** (each carrying 10 marks); **Section B** is Compulsory (carrying 10 marks).

	Section A (Attempta	ny Two)	
1.	a) Write the principle of extraction of urease from jack bean.(U) b) Determine the effect of temperature on a membrane.(Ap)	4 6	CO1 CO2
2.	 a) Explain the basic theory of tissue culture.(U) b) Determine the rate of oxygen evolution with respect to light intensity.(Ap) 	4 6	CO3 CO4
3.	 a) Write the principle behind column chromatography.(U) b)Demonstrate the presence of amylase in germinating seed with a simple experiment.(Ap) 	4 6	CO3 CO2
	SECTION B is compulsory		
4.	Viva-voce (U/An/Ap/R/Ev)	10	CO1 CO2 CO3 CO4 CO5
5.	Practical copy (U/Ap/Ev)	10	CO1 CO2 CO3

BIC11049	DSE III Advanced cell biology(Theory)	L	Т	Р	С
Version 1.0	Contact hours: 60	3	1	0	4
Pre-requisites/Exposure	Basic Knowledge in cell biology				
Co-requisites	-				

- 1. To **recall** and **extend** the basic idea of structure and function of prokaryotic and ukaryotic cells
- 2. To **discuss** detailed perspective of cell including physiological properties, **d** composition, growth, metabolic processes, signalling pathways, lifecycle.
- 3. To **interpret** the applications of different microscopy as tools for understanding **œ** biology.
- 4. To discuss about cell cycles, cell division and apoptosis
- 5. To **apply** and **assess** the cell biology in microscopic and molecular level to understand **b**iuman health and disease.

Course Outcomes

On completion of this course, the students will be able to

CO1: **recall** and extend the basic idea of structure and function of prokaryotic and eukaryotic cells

CO2: **discuss** detailed perspective of cell including physiological properties, cell composition, growth, metabolic processes, signalling pathways, life cycle.

CO3: interpret the applications of different microscopy as tools for understanding cell biology.

CO4: discuss about cell cycles, cell division and apoptosis.

CO5: **apply** and assess the cell biology in microscopic and molecular level to understand of human health and disease.

Catalog Description

This course deals with the biology of cells of higher organisms: The structure, function, and biosynthesis of cellular membranes and organelles; cell growth and oncogenic transformation; transport, receptors, and cell signaling; the cytoskeleton, the extracellular matrix, and cell movements; chromatin structure and RNA synthesis.

Course Content

1. Unit I Introduction tocellbiology [10 Lecture Hours]

Prokaryotic (archaea and eubacteria) and eukaryotic cell (animal and plant cells), cells as experimental models.

2. Unit II Tools of cell biology [10 LectureHours]

Light microscopy, phase contrast microscopy, fluorescence microscopy, confocal microscopy, electron microscopy, FACS. Centrifugation for subcellular fractionation.

3. Unit III Structure of different cellorganelles

Structure of nuclear envelope, nuclear pore complex. ER structure. Organization of Golgi,Lysosome.Structure and functions of mitochondria, chloroplasts and peroxisomes.Zellweger syndrome.

4. Unit IV Protein trafficking [10 LectureHours]

Selective transport of proteins to and from the nucleus.Regulation of nuclear protein import and export.TargetingproteinstoER,smoothERandlipidsynthesis.Exportofproteinsandlipidsfrom ER and into ER. Lipid and polysaccharide metabolism in Golgi. Protein sorting and export from Golgi. Mechanism of vesicular transport, cargo selection, coat proteins and vesicle budding, vesicle fusion.Protein import and mitochondrial assembly, protein export from mitochondrial matrix.Import and sorting of chloroplastproteins.

5. Unit V Cytoskeletal proteins [10 LectureHours]

Structure and organization of actin filaments.Treadmilling and role of ATP in microfilament polymerization, organization of actin filaments.Non-muscle myosin.Intermediate filament proteins, assembly and intracellular organization.Assembly, organization and movement of cilia and flagella.

6. Unit VI Cell wall and extra cellular matrix [5 Lecture Hours]

Prokaryotic and eukaryotic cell wall, cell matrix proteins.Cell-matrix interactions and cell-cell interactions.Adherence junctions, tight junctions, gap junctions, desmosomes, hemidesmosomes, focal adhesions and plasmodesmata.

7. Unit VII Cell cycle, cell death and cell renewal [5 LectureHours]

Eukaryotic cell cycle, restriction point, and checkpoints.Cell division. Apoptosis and necrosis - brief outline. Salient features of a transformedcell.

Reference Books

 The Cell: A Molecular Approach (2009) 5th ed., Cooper, G.M. and Hausman, R.E., ASMPress& Sunderland (Washington DC), SinauerAssociates, MA, ISBN:978-0- 87893-300-6.
 Molecular Cell Biology (2012) 7th ed., Lodish, H., Berk, A., Zipursky, SL, Matsudaira, P., Baltimore, D. and Darnell. J., W.H. Freeman & Company (New York), ISBN:13:978-1-4641-0981-2 / ISBN:10:1-4641-0981-8.

Modes of Evaluation: Quiz/Assignment/ presentation/ extempore/ Written Examination Examination Scheme:

Components	nponents Mid Term		Class Assessment	End Term		
Weightage (%)	20	10	30	40		

Relationship between the Course Outcomes (COs) and Program Outcomes (POs)

	Mapping between COs and Pos							
	Course Outcomes (COs)							
C01	recall and extend the basic idea of structure and function of prokaryotic and eukaryotic cells	PO1, PO6						
CO2	discuss detailed perspective of cell including physiological properties, cell composition, growth, metabolic processes, signalling pathways, life cycle.	PO4,PO2, PO3, PO1.PO5						
CO3	interpret the applications of different microscopy as tools for understanding cell biology.	PO1, PO2, PO3, PO4, PO5, PO7						
CO4	discuss about cell cycles, cell division and apoptosis.	PO1, PO5, PO7, PSO2						
CO5	apply and assess the cell biology in microscopic and molecular level to understand of human health and disease.	PO10, PO11, PO12						

		Fundamental Knowledge	Critical Thinking	Skill	Technical Knowledge	Logical Thinking Ability	Problem Identification	Analytical Knowledge	Career Goals	Team Work	Sustainable Development to Environment	Development to Society	. Development to Humanity
Course	Course	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO1	PO1	PO1
Code	Title	1	2	3	4	5	6	7	8	9	0	1	2
BIC110 49	DSE III Advanc ed cell biology	3	2	2	1	2	1	2	1	-	1	1	1

1=weakly mapped

2= moderately mapped

3=strongly mapped

Model Question Paper

Name: Enrolment No:		ADAMAS UNIVERSITY PURSUE EXCELLENCE								
Course: BIC11049 – DSE III Advanced cell biologyProgram:B.SCBiochemistryTime: 03Hrs.Semester:Even 2019-20Max. Marks:40Instructions:Attempt any three questions from Section A (each carrying 4 marks); any four Questions from Section B (each carrying 7 marks).										
	Section A (Attemp	ptany Three)								
1.	Pinocytosis refers to the uptake of membrane and solutes by the cell in small vesicles. True/False? Justify. (U)		CO1							
2.	A "signal patch" is the	4	CO2							

	receptor to which a "signal peptide" binds. True/False?		
	Justify. (U)		
3.	What is apoptosis? (R)	4	CO5
4.	Prove that lipid molecules can move through the membranes? (Ap)	4	СО3
	SECTION B (Attempt any four Questions)		
5.	 a) Compare and contrast the 'vesicular transport' and 'cisternal maturation' models of golgi function (Ap). b) Why SNARES are necessary for theprocess of "cotranslational transport"? 	4+3	CO2
6.	 a) Where Glycosylation is a form of protein covalent modifications that occurs in cell? Describe the process briefly (U) b) Signal peptides are permanent structural components of a protein how can you use it for protein purification?(Ap) 	1+3+3	CO4 CO2 CO3
7.	 a) Whysulfationrequired for cell?(U) b) What do you know about membraneliquidity?(R) c) What is the structural role of ER incell?(U) 	2+3+2	CO2
8.	a) Describe the connection between single membrane bound organelles in cell?(Ap) b) Difference between primary and secondary lysosome.(Ap)	5+2	CO5

9.	a) What are the hall maksof cancer?(R)		
	b) How can you prove velocity gradient centrifugation isinferior to density gradient centrifugation?(U)	3+4	CO2

BIC12050	DSE III Advanced Cell Biology		Т	Р	C
	Lab(Practical)				
Version 1.0	Contact Hours: 45	0	0	3	2
Pre-requisites/Exposure	Basic Knowledge of Cell Biology				
Co-requisites	-				

1. To **examine** animal and plantcells

2. To demonstrate micrographs of different cellcomponents

3. To **illustrate** the interactions of the cells and how cellular components are used to generate and utilize energy incells

4. To **apply** their knowledge of cell biology to select examples of changes or losses in cell function and compare and contrast the events of cell cycle and its regulation.

5. To appraise the lawsofhered ity with practical emphasis on inheritance..

Course Outcomes

On completion of this course, the students will be able to

CO1: examine animal and plant cells.

CO2: demonstrate micrographs of different cell components.

CO3: **illustrate** the interactions of the cells and how cellular components are used to generate and utilize energy incells.

CO4: **apply** their knowledge of cell biology to select examples of changes or losses in cell function and compare and contrast the events of cell cycle and its regulation.

CO5: **appraise** the laws of heredity with practical emphasis on inheritance.

Catalog Description

Course provides hand-on training in current cell biological methods. A discovery-based component of this course focuses on application of the mentioned methods to study changes in protein expression and cytoskeleton organization in cells exposed to micro environmental stress stimuli.

Course Content

- 1. Visualization of animal and plant cell by methylene blue. [10 LectureHours]
- 2. Identificationofdifferentstagesofmitosisinonionroottip.[10LectureHours]
- 3. Identificationofdifferentstagesofmeiosisingrasshoppertestis. [10LectureHours]
- 4. Micrographs of different cell components (dry lab). [10 LectureHours]
- 5. Sub-cellular fractionation. [10 LectureHours]
- 6. Visualization of nuclear fraction by acetocarmine stain. [5 LectureHours]
- 7. Staining and visualization of mitochondria by Janus green stain. [5 LectureHours]

Reference Books

- The Cell: A Molecular Approach (2009) 5th ed., Cooper, G.M. and Hausman, R.E., ASMPress& Sunderland (Washington DC), Sinauer Associates, MA, ISBN:978-0-87893-300-6.
- 2.Molecular Cell Biology (2012) 7th ed., Lodish, H., Berk, A., Zipursky, S.L., Matsudaira, P., Baltimore, D. and Darnell. J., W.H. Freeman & Company (New York), ISBN:13:978-1-4641-0981-2 / ISBN:10:1-4641-0981-8.

Modes of Evaluation: Quiz/Assignment/ presentation/ extempore/ Written Examination Examination Scheme:

Components	Components Mid Term		Class Assessment	End Term
Weightage (%)	20	10	30	40

	Mapping between COs and Pos							
	Course Outcomes (COs)							
CO1	Examine animal and plant cells	PO1, PO2						
CO2	Demonstrate micrographs of different cell components	PO1,PO2, PO3, PO4						
CO3	Illustrate the interactions of the cells and how cellular components are used to generate and utilize energy in cells	PO5, PO6, PO8, PO7						
CO4	Apply their knowledge of cell biology to select examples of changes or losses in cell function and compare and contrast the events of cell cycle and its regulation.	PO10, PO11,PO12						
CO5	Apprise the laws of heredity with practical emphasis on inheritance.	PO1, PO6, PO8, PO9, PO12, PSO2						

Relationship between the Course Outcomes (COs) and Program Outcomes (POs)

		Fundamental Knowledge	Critical Thinking	Skill	Technical Knowledge	Logical Thinking Ability	Problem Identification	Analytical Knowledge	Career Goals	Team Work	Sustainable Development to Environment	Development to Society	. Development to Humanity
Course	Course	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO1	PO1	PO1
Code	Title	1	2	3	4	5	6	7	8	9	0	1	2
BIC120 50	DSE III Advance d Cell Biology Lab	3	2	1	1	1	2	1	2	1	3	1	2

1=weakly mapped

2= moderately mapped 3=strongly mapped

111

Model Question Paper

Name: Enrolment No:		ADAM UNIVERS PURSUE EXCEL	LAS ITY LEHCE
	ourse: BIC12050– DSE III	Advanced C	
Program:B.SCBio Semester:Even 201			Time: 03Hrs. Max. Marks:40
Instructions:			
Attempt all question	IS		
1	Perform theWBC identificationsusing Gimseastain.(Ap)	10	СО3
2	Count the number of WBS in the sample and calculet the number of WBC in per ml blood.(Ap)	10	CO3
3	Note book(U/Ap/R)	10	CO1, CO2, CO3
4	Viva Voce(U/Ap/R)	10	CO1, CO2, CO3

BIC 11051	DSE III Research Methodology(Theory)	L	Т	Р	C
Version 1.0	Contact Hours: 120	6	0	0	6
Pre-requisites/Exposure	Basic Knowledge of Biochemistry				
Co-requisites	-				

- •To verify and test importantfacts
- •To understand an event or process or phenomenon to identify the cause and effect relationship
- •To develop new scientific tools, concepts and theories to solve and understand scientific and nonscientific problems
- •To find solutions to scientific, nonscientific and socialproblems
- •To overcome or solve the problems occurring in our everyday life.

Course Outcomes

On completion of this course, the students will be able to CO1: verify and test important facts
CO2: illustrate an event or process or phenomenon to identify the cause and correct relationship
CO3: develop new scientific tools, concepts and theories to solve and understand scientific and nonscientific problems
CO4: determine solutions to scientific and social problems
CO5: solve the problems occurring in our everyday life

Catalog Description

The Objective of this course to pay attention to the most important dimension of Research i.e. Research Methodology. It will enable the Researchers to develop the most appropriate methodology for their Research Studies. The mission of the course is to impart research skills to the beginners and help improve the quality of Research by the existing researchers..

Course Content

- •Article Writing [12 LectureHours]
- •Essay [12 LectureHours]
- •Research Paper [12 LectureHours]
- •Book Review [12 LectureHours]
- •Laboratory Research [12 LectureHours]

- •Marketing Research [12 LectureHours]
- •Legislative Drafting [12 LectureHours]
- •Thesis; Dissertation [12 LectureHours]
- •Book[12 LectureHours]
- •Citation Methods and Styles[6 LectureHours]
- •Research Grant Proposals[6 LectureHours]

Modes of Evaluation: Quiz/Assignment/ presentation/ extempore/ Written Examination Examination Scheme:

Components	Mid Term	Attendance	Class Assessment	End Term
Weightage (%)	20	10	30	40

	Mapping between COs and Pos						
	Course Outcomes (COs)						
CO1	Verify and test important facts	PO1, PO11					
CO2	Illustrate an event or process or phenomenon to identify the cause and correct relationship	PO1,PO2, PO3,					
CO3	Develop new scientific tools, concepts and theories to solve and understand scientific and nonscientific problems	PO1, PO2, PO3, PO4, PO5, PO11,					
CO4	Determine solutions to scientific and social problems	PO1, PO5, PO12,					
C05	Overcome or solve the problems occurring in our every day life	PO1, PO6, PO8, PO9, PO12					

Relationship between the Course Outcomes (COs) and Program Outcomes (POs)

BIC 11051	Course Code
DSE III Research Methodolo gy	Course Title
3	[—] [—] [—] Fundamental Knowledge
3	\sim $\stackrel{\sim}{O}$ Critical Thinking
2	³³ Р Skill
1	Technical Knowledge
2	Control Contro
1	[◦] [◦] [◦] Problem Identification
1	[∼] [¬]
1	∞ ♂ Career Goals
1	S Team Work
1	• Bustainable Development to
1	[—] <u>B</u> Development to Society
1	$\stackrel{\sim}{\underset{i}{\underset{i}{\underset{i}{\underset{i}{\underset{i}{\underset{i}{\underset{i}{\underset$

1=weakly mapped 2= moderately mapped 3=strongly mapped

BIC 15053	SEMINAR ON CONTEMPORARY RESEARCH	L	Τ	Р	С
	BIOCHEMISTRY(Practical)				
Version 1.0					2
Pre-requisites/Exposure	Concept of Biochemistry and allied subjects at classes	t pre	viou	15	
Co-requisites					

- 1. This will enable students to design and evaluate scientific investigations
- 2. Students will learn to deduce evidence-based conclusions.
- 3. To develop presentation and scientific content writing.

Course Outcomes

On completion of this course, the students will be able to

CO1 compile novel ideas to enrich their scientific interest

CO2 extend their theoretical and practical knowledge obtained to utilize

biochemical and biotechnological skills for presenting a scientific work.

CO3 **compare** different biochemical studies with contemporary research and analyze the results obtained.

CO4 design and evaluate scientific investigations

CO5 **deduce** evidence-based conclusions.

Catalog Description

The core-course of 'seminar on contemporary research in biochemistry' will enable the students to nurture their research interest by compiling basic knowledge obtained during their education together with novel ideas from contemporary research. An idea about appropriate application of biochemicalandbiotechnologicalskillforindustrialandresearchpurposecanbedeveloped. With the potential to design and evaluate scientific investigations to the students, who will learn to comprehend conclusions based on experimental evidences. The entire literature review work and experimentation focuses on practical implementation of knowledge. Students will perceive the basic concepts of the subject via exercise and discussions with thementor.

Modes of Evaluation: Quiz/Assignment/ presentation/ extempore/ Written Examination Examination Scheme:

Components	Report/Thesis submission	Presentation
Weightage (%)	50	50

Mapping between COs and POs				
	Course Outcomes (COs)	Mapped Program Outcomes		
CO1	compile novel ideas to enrich their scientific interest	PO2, PO3, PO		
CO2	use their theoretical and practical knowledge obtained to apply biochemical and biotechnological skills for presenting a scientific work.	PO5, PO7, PO8, PO10		
CO3	compare different biochemical studies with contemporary research and analyze the results obtained.	PO5, PO6, PO		
CO4	design and evaluate scientific investigations	PO5, PO6, PO8, PO10,PO11		
CO5	deduce evidence-based conclusions.	PO6, PO7, PO8,PO11		

Relationship between the Course Outcomes (COs) and Program Outcomes (POs)

		Fundamental Knowledge	Critical Thinking	Skill	Technical Knowledge	Logical Thinking Ability	Problem Identification	Analytical Knowledge	Career Goals	Team Work	Sustainable Development to nvironment	Development to Society	. Development to Humanity
Course	Course	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO1	PO1	PO1
Code	Title	1	2	3	4	5	6	7	8	9	0	1	2
BIC 15053	Seminar on Contempor ary Research in Biochemist ry	_	3	1	-	3	3	3	3	_	1	2	1

1=weakly mapped

2= moderately mapped

3=strongly mapped

BIC 15052	DISSERTATION	L	Т	Р	С
Version 1.0		0	0	4	6
Pre-requisites/Exposure	Concept of Biochemistry and allied subjects a	at cl	ass I	XII	
Co-requisites					

Course Objectives

1. This will enable students to design and evaluate scientific investigations

- 2. Students will learn to deduce evidence-based conclusions.
- 3. Develop presentation and scientific content writing skill..

Course Outcomes

On completion of this course, the students will be able to

CO1 compile novel ideas to enrich their scientific interest

CO2 use their theoretical and practical knowledge obtained to **apply** biochemical and biotechnologicalskillsforidentification, estimating different biomolecules and their applications. CO3 **compare** different biochemical techniques and analyze the results obtained.

CO4 design and evaluate scientific investigations

CO5 deduce evidence-based conclusions.

Catalog Description

The core-course of 'dissertation' will enable the students to nurture their research interest by compiling basic knowledge obtained during their education together with novel ideas from contemporaryresearch. Anideaabout appropriate application of biochemical and biotechnological skill for industrial and research purpose can be developed. With the potential to design and evaluate scientific investigations to the students, who will learn to comprehend conclusions based on experimental evidences. The entire literature review work and experimentation focuses on practical implementation of knowledge. Students will perceive the basic concepts of the subject via exercise and discussions with thementor.

Modes of Evaluation: Quiz/Assignment/ presentation/ extempore/ Written Examination Examination Scheme:

Components	Report/Thesis submission	Presentation
Weightage (%)	50	50

Relationship between the Course Outcomes (COs) and Program Outcomes (POs)

	Mapping between COs and POs					
	Course Outcomes (COs)	Mapped Program Outcomes				
CO1	compile novel ideas to enrich their scientific interest	PO2, PO3, PO5				
CO2	use their theoretical and practical knowledge obtained to apply biochemical and biotechnological skills for identification, estimating different biomolecules and their applications.	PO5, PO7, PO8, PO10				
CO3	compare different biochemical techniques and analyze the results obtained.	PO5, PO6, PO7				
CO4	design and evaluate scientific investigations	PO5, PO6, PO8, PO10				
CO5	deduce evidence-based conclusions.	PO6, PO7, PO8				

		Fundamental Knowledge	Critical Thinking	Skill	Technical Knowledge	Logical Thinking Ability	Problem Identification	Analytical Knowledge	Career Goals	Team Work	Sustainable Development to nvTronment	Development to Society	. Development to Humanity
Course	Course	PO	РО	PO	PO	PO	PO	PO	РО	PO	PO1	PO1	PO1
Code	Title	1	2	3	4	5	6	7	8	9	0	1	2
BIC 14054	Dissertati on	-	1	1	-	3	3	3	3	-	1	-	-

1=weakly mapped

2= moderately mapped

3=strongly mapped

Cour	Course	PO	P	P	PO	РО	PO6	PO	PO	PO	PO	PO	PO
se	Title	1	O	O	4	5		7	8	9	10	11	12
Cod e			2	3									

ADAMAS UNIVERSITY SCHOOL OF LIFE SCIENCE AND BIOTECHNOLOGY

B.Sc. (Hons) Biochemistry (2020-21)

CO-PO mapping:

	Molecule												
BIC1100 1	s of Life	3	3	-	-	-	-	-	-	-	-	-	-
BIC120 02	Molecu ;es of Life Lab	3	3	3	3	-	3	3	-	-	-	-	-
BIC1100 3	PROTEI N (THEOR Y)	3	3	3	3	-	-	3	-	-	-	-	-
BIC1200 4	PROTEI N LAB (PRACTI CAL)	3	-	3	-	-	-	-	-	-	-	-	-
ENG1105 7	English Language & Literature	-	-	-	-	-	-	-	-	-	-	-	3
DGS1100 1	Design Thinking	-	3	-	-	-	3	-	-	3	3	-	-
BOT110 01	ELECTI VE BOTAN Y - I (THEORY	3	3	-	-	-	-	-	-	-	-	-	-
ZOL110 01) ELECTI VE ZOOLO GY I (THEOR Y)	3	3	-	-	_	-	_	-	_	-	-	-
CHM1115 1	Elective Chemistry I	-	-	3	-	-	-	-	-	-	-	-	-
PSG1300 4	General Psycholo gy	3	3	-	-	-	-	-	-	-	-	-	-
BOT1200 2	Elective Botany I Lab	3	-	3	-	-	-	-	-	-	-	-	-
ZOL120 02	ELECTI VE ZOOLO GY LAB I (PRACTI CAL)	3	-	3	-	-	-	-	-	-	-	-	-
BIC22515	Electove Chemistr y I lab	3	-	3	-	3	-	-	-	-	-	-	-
BIC11005	Enzymes (THEO RY)	3	3	3	-	-	-	-	-	-	-	-	-
BIC1200 6	Enzymes Lab	3	-	3	3	-	-	3	-	3	-	-	-

	Human												
BIC1100 7	Physiolo gy	3	3	3	-	-	3	-	-	-	-	-	-
BIC12008	Human Physiol ogy Lab	3	-	3	-	-	3	3	-	-	-	-	-
EVS1111 0	Environ mental Science and Energy Resourc es	3	3	-	-	-	-	-	-	-	-	-	-
IDP14001	Inter disciplinar y project	-	3	3	3	3	-	-	-	3	-	-	-
BOT 11003	ELECTI VE BOTAN Y - II (THEORY)	3	3	-	-	-	-	-	-	-	-	-	-
BOT 12004	Elective Botany II Lab	3	3	3	-	-	-	-	-	-	-	-	-
ZOL1100 3	ELECTI VE ZOOLO GY - II (THEOR Y)	3	3	-	-	-	-	-	-	-	_	-	-
ZOL 12004	ELECTI VE ZOOLO GY LAB II (PRACTI CAL)	3	-	3	-	3	3	-	-	-	-	-	-
DGS110 11	Design Thinking	3	-	-	-	-	-	3	-	-	-	-	-
PSG1300 7	App lied Psy chol ogy	3	3	-	3	-	-	-	-	-	-	-	-
BIC1101 0	METAB OLISM OF CARBO HYDRA TES AND LIPIDS (THEOR Y)	3	3	-	-	3	-	-	-	-	-	-	-
BIC12015	METAB OLISM OF	3	3	3	-	-	-	-	-	-	-	-	-

	AMINO ACIDS AND NUCLE OTIDES LAB SEC												
BIC1101 6	I :	3	-	3	3	3	3	3	-	-	-	-	-
	TOOLS AND TECHNI QUES IN BIOCH EMISTR Y												
BIC11017	Clinical Bioche mis try (THEOR Y)	3	3	_	-	-	_	3	-	-	-	_	-
SOC1410 0	Commun ity Service						3			3			3
EIC11001	Venture Ideation	-	-	-	-	-	-	-	3	3	-	3	-
BIC1101 2	Cell Biology	3	-	3	-	-	-	-	-	-	-	-	-
BIC12013	Cell biology Lab	-	-	3	3	-	-	-	-	-	-	-	-
SDS1150 6	Stati stics I	3	3	-	-	-	-	-	-	-	-	-	-
CHM1115 1	Elective Chemist ry I	3	3	-	-	-	-	-	-	-	3	-	-
CHM 12152	Elective Chemist ry Lab III	-	-	-	-	-	-	3	-	-	-	-	-
CSE1164 1	Elective Computer Science I	3	-	3	-	-	-	-	-	-	_	-	-
CSE1264 2	Elective Computer Science I Lab	3	-	3	-	3	-	-	-	-	-	-	-

						1						-	_
BIC11 018	Gene organi zati on, replica tion and repair	3	3	3	-	3	-	_	-	-	-		
BIC12 019	Gene organi zati on, replica tion And	-	3	-	_	3	-	3	-	-	-	-	-
BIC11020	repair Lab Immun					3							
	ology	3	3	-	-		3	-	-	-	-	-	-
BIC12021	Immunol ogy Lab	-	3	-	-	3	-	3	-	-	-	-	-
BIC11022	Membra ne biology and boenerge tics	-	3	-	-	-	-	-	-	-	-	-	-
BIC1202 3	MEMBR ANE BIOLOG Y AND BIOENE RGETIC S	3	-	3	-	-	-	-	3	-	-	-	-
	LA B (PR AC TIC AL)												
BIC11024	Protein Purificati on Techniqu es	3	3	-	-	3	-	3	-	-	-	-	-
BIC11025	Recombina nt DNA Technolog y	3	3	2	2	2	2	-	1	1	2	1	-
PSG1102 1	Human Values and Profession al Ethics	-	-	-	-	-	-	-	-	-	-	3	-
SDS115 07	Electiv e Statisti cs II		3			3							

Chamistry In Concept Compute er S - 3 -	CHM1115	Elective	3	_	3	_	_	_	_	_		_	_)
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			3	_		-	-	_	_	_	-	_	_	-
CIM1215 Elective Lab 3 - 3 -		-												
4 Chemistry er	CHM1215		3	-	-	3	-	-	-	-	-			
Lab II I </td <td></td> <td>-</td> <td>-</td> <td>-</td>												-	-	-
CSE11 643 Comput er Science H - - - - - - 3 - - - - - 3 - - - - - 3 - - - - 3 - - - - 3 - - - 3 -<														
643 er .														
No. 10 No. 10<		Comput												
II II II II II III IIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	643		-	-	-	-	-	-	-	3	-	-	-	-
CSE126 Compute r Science II Lab 3 - 3 - 3 -														
CSE126 Compute II Lab 3 - 3 - 3 - 3 - 3 - 5 - 1 <th1< th=""> 1</th1<>														
CSEL20 r Science HC102 3 - 3 -														
44 Pacience 0 <th0<< td=""><td>CSE126</td><td></td><td>2</td><td></td><td>2</td><td></td><td>3</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th0<<>	CSE126		2		2		3							
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			3	-	3	-		-	-	-	-	-	-	-
BIC1102 of Genetics 3 . . 3 3 .														
BIC1102 Genetics 3 - - 3 3 - - <														
6 Cenetics 0 1	BIC1102		3	_	-	3	3	-	_	-	-	-	_	_
BIC1202 of Genetics Lab 3 - 3 3 -			Ŭ			Ĭ								
BIC1202 Genetics 3 - - 3 3 -														
7 Lab 1 <th1< th=""> 1 1 1</th1<>	BIC1202		3			2	3							
BIC11028 Gene expression on and regulation 3 - <td></td> <td></td> <td>5</td> <td>-</td> <td> -</td> <td>5</td> <td></td> <td> -</td> <td>-</td> <td> -</td> <td> -</td> <td> -</td> <td>_</td> <td>-</td>			5	-	-	5		-	-	-	-	-	_	-
expressi on and regulation expression expression <thexpression< th=""> expression</thexpression<>	DIG11000													
on and regulati on on and regulati on and regulati on Lab Image: Construction of the	BIC11028		3	-	-	-	-	-	-	-	-	-	-	-
regulati on regulati on Image: series serie														
on -														
BIC12029 Gene Expressi on and regulati on Lab 3 -														
Expressi on and regulati on Lab Expressi on and regulati on Lab Image: Second sec	BIC12020		3	_	_	-	-	_	_	_		_	_	
on and regulati on lab on l				_		_	-		_					-
regulati on Lab														
on Lab (1) <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>														
BIC11 030 BIOINF ORMA TICS 3 3 - <td></td>														
030 ORMA TICS 3 3 -	BIC11													
TICS Image: state with the state wi			3	3	-	-	-	-	-	-	-	-	-	-
BIC11032 Basic Microbio logy 3 - - 3 3 - - 3 3 - - 3 3 - - 3 3 3 - - 3 3 3 - - 3 3 3 - 3 3 3 - - 3 3 - - 3 3 - - 3 3		TICS												
Microbio logy Microbio	BIC11032	Basic	3	-	-	3	3	-	-	3	-	-	3	-
logy 1 <th1< th=""> <th1< th=""></th1<></th1<>														
BIC11034 DSE 3 3 3 - 3 3 3 3 - - - - 3 - - 3 - 3 - 3 3 3 3 3 - - - - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - - 3 - 3 - 3 3 - - 3 3 - - 3 3 -		logy												
Molecula r Basis of Noninfec tious Human Disease -	BIC11034		3	3	3	-	3	3	3	-	-	-	3	-
r Basis of Noninfec tious Human Disease - <td></td> <td></td> <td></td> <td></td> <td>_</td> <td></td> <td></td> <td>_</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>					_			_						
Noninfec tious Human Disease Image: Second		r Basis												
tious Human Disease Image: Sease		of												
Human Disease Image: Constraint of the sease Imag														
Disease Image: Construction of the const														
BIC12 031 BIOINF ORMA TICS (LAB) 3 3														
031 ORMA 3 3 - <td></td>														
(LAB) Image: Constraint of the second se		ORMA	3	3	-	-	-	-	-	-	-	-	-	-
DSE I A <td></td>														
BIC1203 Basic 3 3 3 3 - - 3 3 - <th< td=""><td></td><td>(LAB)</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>		(LAB)												
3 Microbi ology - Lab - BIC1203 DSE I 3 3 3 3 3 3 3 3 3 3 3 3		DSE I												
3 Microbi ology - Lab - BIC1203 DSE I 3 3 3 3 3 3 3 3 3 3 3 3	DIG1002		2	2	2	2			2	2				
Microbi Image: Constraint of the second se	3 BIC1203		3	3	3	3	-	-	3	3	-	-	-	-
Lab Image: Constraint of the second seco														
BIC1203 DSE I 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 - 3 -														
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $														
	BIC1203	DSE I	3	3	3	3	3	3	3	3	3	-	3	
			Ŭ	Ŭ	Ŭ	Ĵ		Ŭ		Ŭ			Ŭ	

			1	1	1	1	1		1	1		1	,
	Molecula r Basis of Non infectiou s Human												
	Disease												
BIC11036	DSE	3	3	3	-	3	3	3	3	3	-	-	-
	II Molecula r Basisof Infectiou s Human Disease												
BIC11038	Medical Microbiol ogy	3	3	3	-	3	3	3	3	3	-	-	-
BIC11040	Nutrition al Biochemi stry	3	3	3		-	3	3	3	-	3	3	-
BIC12037	Molecula r Basis of Infectiou s Human Disease Lab	3	3	-	3	3	3	3	3	-	-	-	-
BIC12039	DSE Medical Microbi ology Lab	3	3	-	-	3	3	3	3	-	-	-	-
BIC12041	Nutrition al Biochemi stry Lab	3	3	3	3	3	3	3	3	-	3	3	-
BIC14057	Industry Internship	-	3	3	3	3	3	3	3	3	-	-	-
BIC1104 3	Geneti c Engine erin g and Biotec hnolog y	3	-	-	-	-	-	-	-	-	-	-	-
BIC12044	Genetic Engineeri n g and Biotechnol ogy Lab	3	3	-	-	-	-	-	-	-	-	-	-
BIC 11045	Hormon es: Bioche mistry and	3	3	3	3	3	3	3	3	-	-	-	3

	Functio												
BIC 12046	n Lab:Hor mones Biochemi stry and Function	3	3	3	-	3	3	3	3	-	-	3	-
BIC11047	PLANT BIOCHE MISTRY	3	-	3	-	-	-	-	3	-	-	-	-
BIC12048	PLANT BIOCHE MISTRY LAB	3	-	3	-	-	-	-	3	-	-	-	-
BIC11 049	Advanc ed cell biology	3	-	-	-	-	-	-	-	-	-	-	-
BIC12 050	Advance d Cell Biology Lab	3	-	-	-	-	-	-	-	-	3	-	-
BIC11051	Research Methodol ogy	3	3	-	-	-	-	-	-	-	-	-	-
BIC 15053	Seminar on Contem porary Researc h in Bioche mist ry	-	3	-	-	3	3	3	3	-	-	-	-
BIC 15052	Dissert ati on	-	-	-	-	3	3	3	3	-	-	-	-
Average		2.69 5652 17	1.869 565	1.542 857	0.89 4737	1.22 7273	1.105 263	1.41 1765	0.890 625	0.67 5	0.454 545	0.685 714	0.428 571