Biomass based biofuel generation future in India

Out of some of the hottest trends that have been on the top lists for quite a while are choosing an entrepreneur as the primary occupation and doing an eco-friendly business.

The need of renewable energy is increasing in the world due to rapidly growing human population, urbanization and huge consumption of fossil fuels. Fossil fuel reserve is very limited, and the reserve is getting depleted day by day. The primary sources of energy that can be used as the alternative of fossil fuels are wind, water, solar and biomass-based energy.

Currently biomass as a feedstock for biofuel production is gaining importance. Biomass energy is supplying about 10-15% of total energy demand of the present world. Biomass feedstocks include organic material such as wood, wood-based energy crops, grass, lignucellulosic materials like wheat straw, rice straw, sugarcane baggase, corn, microalgae, agricultural residues, municipal wastes, forest product wastes, paper, cardboard and food waste. Biomass can be converted into biofuels by thermochemical and biochemical conversion. Based on the types of feedstocks or biomass the biofuels derived are divided into different groups i.e. 1st generation, 2nd generation, 3rd generation. 1st generation biofuels mainly extracted from the food crop-based feedstocks like wheat, barley, sugar and used for biodiesel and by fermentation to produce bioethanol. But first-generation biofuels face the “fuel vs food” debate and also the net energy gain is negative.  1st generation biofuels production systems also have some economic and environmental limitations. To overcome the drawbacks of 1st generation biofuels 2nd generation biofuels have been generated from the non-food crops-based feedstocks like organic wastes, lignocellulosic biomass etc. For biofuel production from these sources rigorous pretreatments are required to make the feedstocks suitable for biodiesel production. This is the major drawback of 2nd generation biofuel production. Then the attention of the world has been shifted towards 3rd generation biofuel production entails “algae-to biofuels”. Microalgae is easy to cultivate, has higher photosynthetic rate and growth rate than other plants and there is no food vs. feed dilemma present of using microalgae as feedstock for biofuel production. Presently the attention is also given towards fourth generation biofuel. The former concept of third generation of biofuel deals with the conversion process itself from the microalgae to biofuel. The fourth generation of biofuel concept deals with development of microalgal biotechnology via metabolic engineering to maximize biofuel yield. Fourth generation biofuel uses genetically modified (GM) algae to enhance biofuel production. In comparison with third generation in which the principal focus is in fact processing an algae biomass to produce biofuel, the main superior properties of the fourth are introducing modified photosynthetic microorganisms which in turn are the consequence of directed metabolic engineering, through which it is possible to continuously produce biofuel in various types of special bioreactors, such as photobioreactors.

Biomass has the highest potential for small scale business development and mass employment. Characterized by low-cost technologies and freely available raw materials, it is still one of the leading sources of primary energy for most countries. With better technology transfer and adaptation to local needs, biomass is not only environmentally benign, but also an economically sound choice. Bio-based energy can be expected to grow at a faster pace in the years to come. 

On the Biomass Energy sector, the India government committed to increasing the share of non-fossils fuel in total capacity to 40% by 2030. India produces about 450-500 million tonnes of biomass per year. Biomass provides 32% of all the primary energy use in the country at present. A total capacity of 10145 MW has been installed in the Biomass Power and Cogeneration Sector. The Installed Capacity of Biomass IPP is 1826 MW together with the Installed Capacity of Bagasse Cogeneration is 7547 MW and the Installed Capacity of Non-Bagasse Cogeneration is 772 MW. 

The eco-friendly business has lots of benefits, by going green with your business you’re promoting the Earth’s safety from potential environmental catastrophe, you support innovation and concomitantly producing green energy.

The Government of India has been constantly bound on increasing the use of clean energy sources. This does increase a better future and at the same time creates employment opportunities too. According to The Ministry of New and Renewable Energy (MNRE), India’s total installed capacity of renewable energy is 90 GW excluding hydropower. Also, it states that 27.41 GW will be added. Renewable Energy in India is a great asset to Energy Contribution, yet India still needs to work a lot in Renewable Energy Sectors.

A LEGAL STUDY OF THE DEVELOPMENT OF THE COPYRIGHT LAW IN INDIA

The history of copyright is the tale of how the law has adapted to technical advancements. There have been significant technological advancements since the Rome Convention in 1961 and the final amendment to the Berne Convention in 1971. The introduction of digital technology has repeatedly put a major strain on the copyright regime. The WIPO had established two committees of experts [Committee of Experts on a Possible Protocol to the Berne Convention in September 1991 and the Committee of Experts on a Possible Instrument for Protection of the Rights of Performers and Producers of Phonograms in September 1992] to examine the effects of new technologies on copyright and neighbouring rights. These Committees, after exhaustive discussions, in which India was an active participant, drafted basic proposals for three new treaties, that is-

  1. Treaty for Protection of Literary and Artistic Works;
  2. Treaty for Protection of the Rights of Performers and Producers of Phonograms; and
  3. Treaty on sui-generis protection for Databases.

The Conference adopted two treaties, the WIPO Copyright Treaty and the WIPO Performances and Phonograms Treaty. The database treaty was deferred for further study.

Being a WIPO member and a party to the WCT (World Copyright Treaty) and WPPT, India has repeatedly revised its domestic legislation to be in line with international copyright standards. The Copyright (Amendment) Act of 1994 and the Copyright (Amendment) Act of 2012 serve as excellent examples of the sufficient degrees of advancement in Indian copyright laws that have been repeatedly seen.

The Copyright (Amendment) Act, 2012’s recognition of the performers’ rights under Section 38-A and the recognition of the performers’ moral rights under Section 38-B speak volumes about Indian jurisprudential thought and intellectual development in relation to the related rights in the area of copyrights.

The 50-year protection period offered by Indian law to phonogram performers and producers is in line with worldwide norms; the duration of the protection is not just adequate but also satisfactory. It is also a nice development that the period of protection for broadcasting reproduction rights has been increased from 20 to 25 years in the case of broadcasting organizations.

Since the passage of the Copyright (Amendment) Act in 1994 and the Copyright (Amendment) Act in 2012, India’s Broadcasting Reproduction Rights and Performers’ Rights have advanced significantly. In addition to the general-statutory and other economic rights, India has made a significant advance by focusing on and incorporating the idea of moral rights—that is, rights related to paternity and integrity—into its legal framework.

India is quickly catching up to its necessary credit, as in some countries, performers, phonogram producers, and broadcasters of copyrighted works are protected by copyright alongside authors, while in others, they are protected by neighbouring or related rights because of their role in distributing copyrighted works to the public as consumer goods.

What India is still to realize

  1. New media and technology give right holders new avenues for the distribution and exploitation of their works, especially online works, potentially opening up more chances for direct licensing. Systematic management of digital rights are intended to allow a greater range of terms and conditions for the use of those works while better distributing and protecting the right holder’s investment [however, India awoke to this realization and adopted Sections 65-A and 65-B by virtue of the Copyright (Amendment) Act, 2012]. Increased market adoption of these systems is anticipated to expand consumer choice and availability of copyright works, such as digital software and entertainment products, and to permit price points that reflect the consumer’s actual use rather than an assumption that the consumer will use the product in a variety of formats. All of this must further copyrights as well as copyright-related rights, such as the rights to privacy and publicity.
  2. In the digital networked environment, creators and performers want assurances that their moral rights will be upheld, especially by third parties, and that their creations and performances won’t be unfairly influenced.
  3. Since the WIPO Internet Treaties negotiations began, audio visual performers have been calling for an upgrade to their legal status on a global scale. As a result, India should proactive begin pursuing this goal on a national level. India cannot afford to lose sight of the Rome Convention, which is now incorporated on a global level and seeks to update broadcasters’ rights in response to market changes and technical advancements.

Overall, India appears to be well-equipped to provide the allied-right-holders, such as performers, phonogram producers, and broadcasters, with the necessary protection. It is hoped that India will continue to advance and meet the challenges presented by the wave of digitalized, networked environments ‘head-on’.

Skip to content