Biomass based biofuel generation future in India

Out of some of the hottest trends that have been on the top lists for quite a while are choosing an entrepreneur as the primary occupation and doing an eco-friendly business.

The need of renewable energy is increasing in the world due to rapidly growing human population, urbanization and huge consumption of fossil fuels. Fossil fuel reserve is very limited, and the reserve is getting depleted day by day. The primary sources of energy that can be used as the alternative of fossil fuels are wind, water, solar and biomass-based energy.

Currently biomass as a feedstock for biofuel production is gaining importance. Biomass energy is supplying about 10-15% of total energy demand of the present world. Biomass feedstocks include organic material such as wood, wood-based energy crops, grass, lignucellulosic materials like wheat straw, rice straw, sugarcane baggase, corn, microalgae, agricultural residues, municipal wastes, forest product wastes, paper, cardboard and food waste. Biomass can be converted into biofuels by thermochemical and biochemical conversion. Based on the types of feedstocks or biomass the biofuels derived are divided into different groups i.e. 1st generation, 2nd generation, 3rd generation. 1st generation biofuels mainly extracted from the food crop-based feedstocks like wheat, barley, sugar and used for biodiesel and by fermentation to produce bioethanol. But first-generation biofuels face the “fuel vs food” debate and also the net energy gain is negative.  1st generation biofuels production systems also have some economic and environmental limitations. To overcome the drawbacks of 1st generation biofuels 2nd generation biofuels have been generated from the non-food crops-based feedstocks like organic wastes, lignocellulosic biomass etc. For biofuel production from these sources rigorous pretreatments are required to make the feedstocks suitable for biodiesel production. This is the major drawback of 2nd generation biofuel production. Then the attention of the world has been shifted towards 3rd generation biofuel production entails “algae-to biofuels”. Microalgae is easy to cultivate, has higher photosynthetic rate and growth rate than other plants and there is no food vs. feed dilemma present of using microalgae as feedstock for biofuel production. Presently the attention is also given towards fourth generation biofuel. The former concept of third generation of biofuel deals with the conversion process itself from the microalgae to biofuel. The fourth generation of biofuel concept deals with development of microalgal biotechnology via metabolic engineering to maximize biofuel yield. Fourth generation biofuel uses genetically modified (GM) algae to enhance biofuel production. In comparison with third generation in which the principal focus is in fact processing an algae biomass to produce biofuel, the main superior properties of the fourth are introducing modified photosynthetic microorganisms which in turn are the consequence of directed metabolic engineering, through which it is possible to continuously produce biofuel in various types of special bioreactors, such as photobioreactors.

Biomass has the highest potential for small scale business development and mass employment. Characterized by low-cost technologies and freely available raw materials, it is still one of the leading sources of primary energy for most countries. With better technology transfer and adaptation to local needs, biomass is not only environmentally benign, but also an economically sound choice. Bio-based energy can be expected to grow at a faster pace in the years to come. 

On the Biomass Energy sector, the India government committed to increasing the share of non-fossils fuel in total capacity to 40% by 2030. India produces about 450-500 million tonnes of biomass per year. Biomass provides 32% of all the primary energy use in the country at present. A total capacity of 10145 MW has been installed in the Biomass Power and Cogeneration Sector. The Installed Capacity of Biomass IPP is 1826 MW together with the Installed Capacity of Bagasse Cogeneration is 7547 MW and the Installed Capacity of Non-Bagasse Cogeneration is 772 MW. 

The eco-friendly business has lots of benefits, by going green with your business you’re promoting the Earth’s safety from potential environmental catastrophe, you support innovation and concomitantly producing green energy.

The Government of India has been constantly bound on increasing the use of clean energy sources. This does increase a better future and at the same time creates employment opportunities too. According to The Ministry of New and Renewable Energy (MNRE), India’s total installed capacity of renewable energy is 90 GW excluding hydropower. Also, it states that 27.41 GW will be added. Renewable Energy in India is a great asset to Energy Contribution, yet India still needs to work a lot in Renewable Energy Sectors.

Future of Brand Communication and Management

Branding have been evolved hundreds of years, may be more than this. The meaning and prospect of this brand came into use over a decade. The meaning and narratives of brand communication has been progressed and it is not limited to a particular products and services but the horizon of branding widens its spectrum in a larger array. Here, will reconnoitres the concept of branding which have been advanced to a new paradigm, and would venture on what’s coming next.

 

The word Brand is etymologically derived from the word “Brandr”, a term from Ancient Norse meaning “to burn”. Around 950 A.D. the term “brand” denotes to a burning piece of wood. By 1300s this word was used to mean a torch, a factor which burns a piece of wood. This term brand further adds to denote to scorch the cattle of ownership by the year 1500s. The ownership status quo been conferred if their cattle got misplaced, ranched or lost. So, the development of using some similar trait of identifying their respective cattle were used. They had very simple, familiar identification and quick remembrance which lead and pave the way for ‘logo’ which is indispensable for brand identity and image.

Brand communicates to inform, persuade, guide, teach, evoke, enlighten, remind and gives a new insight about a product, service, company, organization to its stakeholders and persuades to pursue the positive perception of the products, service and companies’ strength and core values.

For the drive of easier comprehension, let us put some of those changes in the form of pointers:

  1. The Preponderance of Digital Media: with the advent of digital media, the traditional form of paid media push marketing strategy is no longer valid and lost its conventional power to hold and influence consumers.
  2. Personal Branding: the role of Influencer’s which is in the rise of social media platforms has changed the phenomenon of the conventional definition of personal branding. Social media and branding also the future of branding in a positive room which enables every company and organization to maintain and update their social media pages of triggering and disseminating useful information (Facebook. Instagram and Twitter).
  3. Brand Extension: it creates credibility and consumers gets varied scope of opportunity if the brand positively follows up for further extension.
  4. Brand Association: the top of the mind awareness (recall) and aided awareness (recognition) seems credible in digital age with the help of niche marketing strategy and native advertising.
  5. Co-Branding: this creates the blurred boundaries between global market products and services. So, no matter what, there is a prospect avenue for business collaborations both nationally and internationally. With the rapid changes in the pattern of brand communication, definitely this also need to be focussed international + local products collaboration (because generally the known businesses allies with the established brands).
  6. Brand Equity: Simply, the brand awareness, positioning and loyalty leads to brand equity and paved the way for understanding these three factors in a more diligent manner (recognition/recall/ aided awareness/ TOMA etc).
  7. Naming of the Brand: this gone beyond the graphics but the interactive media content spuriously based on the art, aesthetics, idea and creativity proves to be right in contemporary times. It more emphasizes the ideation blended with virtual reality and augmented reality.
  8. Viral Marketing: this strategy is a new norm to reach out to potential consumers through snowballing and e word of mouth.
  9. SEO: it enhances the website traffic to update the page of the website and searches through hashtags and keywords. It aims to unpaid traffic rather than paid traffic.
  10. Outsourced Delivery: there are few companies and creative bunch of groups who takes this up on behalf of reputed and established brands. The young professionals who is proficiency of digital media marketing, search engine optimization and algorithms related to augmented reality and virtual reality can be put forth for positive brand image.

The rise of the usage and availability of internet across geographic boundaries with economic viability, enhances the platforms of social media which is a driving factor for the next stage of the progression of branding. Point to be noted that the definition of conventional consumer or customers have changed drastically, there is a bent towards the coexistence and participatory. They do not want to consume the products or content anymore, rather tries to participate and so as the future of brand communication not to communicate anymore but to act, feel and intermittence. The power of influencers of social media brands like Instagram, YouTube and Facebook frequently depend on their users to aid and to create their value and how they should be perceived by the public. It further gives them their identity and positive image and enhances the brand durability. Various content sites like Buzzfeed, Amazon, The Huffington post and Yelp be contingent on reviewers to deliver their utmost convincing content. In this regard, many web-based companies and organizations handles their respective brand image and gets loyalty and revenue through active consumers which is unmatched and some thing interesting in these recent times. On the other hand, viral marketing, search engine optimization, and outsourced delivery permits their companies and organizations to have expansion visibility which reduces the cost of products delivery and saves millions of bucks and investment on advertising and infrastructure.

Basically, to conclude, if there is a brand admiration established by the consumers and they would like to see the advancement of prospect category of a specific product, then they must go ahead. This improvement on positive branding and effective brand communication may bring various advantages to one’s business, for example, good growth, profit and a prospect to meet their clients’ who might need to know the advancement of companies’ brand image. If an excellent inkling or creativity for new product is there to experiment that certainly the consumers/customers may accept or like, then probably yes, the companies must give it a try!

Lean Management – An Advanced Management Practice in Construction Industry

1.0 Preamble

The lean thinking is a scientific approach in managing time and cost of the construction project which emphasize waste minimization and customer satisfaction. It originated from Toyota and adopted all over the world for managing the manufacturing process to enhance the quality, productivity and safety. The focus point of lean management is to design a customer centric approach by minimizing cost and time by reducing all kind of wastes in the production.

2.0 Lean Management in Construction

The construction is an uncertain sector where the target business remains as it is but priorities changes frequently. Here supportive and non-value addition works are more comparing than manufacturing sector, adopting lean principle is a challenge. Here to increase the operational efficiency, one need to control the inventory even though the unpredictable weather, market, vendors, inventory requirements and especially the labours both skilled and unskilled.  These variations cannot be eliminated by one go with lean principles but it can improve the controllable and uncertainties will be addressed confidently. Lean management helps the team to schedule the resource requirements such as men, machine and materials more effectively which provides the expected outcome within the estimated time and budget. This encourages the construction firms to adopt lean management as tool for continual improvement in product and services through effectively managing process and practices.

The six basic lean principles followed in construction management are discussed below for common understanding and implementation.

  1. Identifying Value

The construction industry mainly has focused on the needs of the customer to provide value to the product/service demanded.  Realizing the customer requirement and perspective during the planning stage and shape their idea in to reality with an efficient team of engineers, suppliers and labours will provide great faith on the firm.

  1. Map the Value Stream

Generate a value stream such a way that the process and procedures are well defined and precisely mapped with action plan and resources requirements to give the confidence to the customer that it will be delivered in time.

  1. Eliminating Waste

The main aim of lean practice is to eliminate waste where every possible and following are the major areas to be considered

  • Transportation –  Avoid waste during transportation of men, machine, materials and equipment when moved from one site to other. Provide precise information about the transfer of goods, date, time, location and quantity to avoid excessive waiting, movement and overproduction.
  • Inventory –  Provide exact inventory requirements by proper estimation and avoid surplus materials which will be idle in the site and shoots-up the cost and space.
  • Movement –  Avoid moving materials, equipment and manpower multiple time across the site and create unnecessary motion.
  • Wait Time –  Do proper scheduling to avoid unengaged manpower, material and machines. This makes either manpower or equipment kept idle for unavailability of one over other because of improper planning.
  • Utilisation of Resources – Allocate right person for the right job to avoid expertise or knowledge go waste on the other hand quality output will not be there right in time. Maximum utilization of available resources is very much important.
  • Excess Processing –  Reduce the unwanted task which doesn’t make any value to the project which lead over processing.
  • Over Production –  It happens when one process completed earlier than the expected time.
  1. Create Continuous Workflow

The purpose of lean practice is to achieve systematic, reliable and time bounded result in the construction project. In the lean management, every stage is to predetermined and need to be performed sequentially. There should not be any bottlenecks and to achieve this proper communication and collaboration required among team at every stage. Need to divide the construction activity and ensure time and resources to complete the work within the project schedule.

  1. Create Pull System

Creating stable workflow is a healthy sign to your organization that it will deliver the work task faster and effortless. This can be achieved by pull system or scheduling appropriately to make the collaborative work to understand the sequential nature of the work to complete with in the target time.

  1. Continuous Improvement

The continuous improvement is an essential life line of lean construction. Always identify the scope for improvement and act accordingly, for this close monitoring is required, similarly at any time uncertainties may occur for that you should be vigilant enough to control and manage the project with in the time frame and budget. This makes the construction project economical and profitable to the company.

3.0 Benefits of Lean Management in Construction Industry

  1. Lean Management minimize the cost of production and maximize the profit
  2. It values the customer feedback and improves the customer interaction and value. This enhances the product and services of the organization.
  3. Establishment of Pull and Push system prevents over production and carrying cost.
  4. The focused monitoring in to detail minimize the defects and increases the quality of the product.
  5. Lean Management provides a systematic, well defined work frame which reduces uncertainties and increases the safety of the employees.
  6. Introducing Lean Management will encourage work force for daily improvement that create a healthy atmosphere within the organization
  7. In the lean process, managers are frequently in interaction with employees about the work process, this makes them feel aligned and creates great bonding.

4.0 Concluding Note

The implementation of lean management is the need of the hour to all the construction industry to practice sustainable technology by eliminating the waste, increasing the efficiency, productivity and quality of the construction. This customer focused approach will promote inclusive culture within the organization lifts not only productivity and also employee satisfaction.

Technological spin-offs from High Energy Physics research

The Large hadron Collider at the CERN (Image courtesy: CERN)
The Large hadron Collider at the CERN (Image courtesy: CERN)

There is some good news waiting for the air travellers. They’ll soon be able to walk through airport security without having to separate liquids and gels in their hand baggage. Thanks to the new upgraded computerised tomography (CT) scanners that can detect explosives without going through a separate screening for the liquids and gels.

This discovery was widely publicised and lauded as a lifesaver for both travellers and security staff. But what was less frequently noted in those reports is that this advancement was made feasible due to the insights gained from the development of particle accelerator physics.

The bright and novel concepts and technology of particle physics have penetrated the mainstream of society to revolutionise our lives, from the first days of high energy physics to the recent times.

A broad and rising list of useful practical applications with contributions from particle physics can be seen in medicine, homeland security, industry, computers, science, workforce development etc. Noted below are a few such examples.

 

Medicine:

  • MRI: Magnetic resonance imaging (MRI) is a basic medical diagnostic technique that employs superconducting magnet technology, which was developed by scientists to accelerate protons to the maximum energy possible. Based on nuclear magnetic resonance principles, MRI creates high-quality images of the inside of the human body. Powerful magnets composed of superconducting wire and cable are at the heart of MRI technology. This technique was first created to build Fermilab’s Tevatron, the world’s first superconducting synchrotron, by a team of professionals in superconductivity, physics, engineering, material science, and manufacturing.

 

  • Cancer Therapy: Particle physics technology has resulted in significant advancements in cancer treatment. Accelerators that produce x-rays, protons, neutrons, or heavy ions are used at every major medical centre for illness diagnosis and treatment. Proton therapy, in comparison to x-rays, has significant therapeutic benefits, particularly for young patients. In the 1950s, medical linear accelerators for cancer therapy were developed at Stanford and in the United Kingdom using techniques developed for high-energy physics research. This innovation leads to a new industry and countless lives were saved. According to estimates over 7,000 functioning medical linear accelerators have treated over 30,000,000 people around the world.

Computing: 

  • The World Wide Web: The World Wide Web was created by particle physicists to allow them to connect rapidly and effectively with peers all around the world. Tim Berners-Lee, a CERN scientist, created the World Wide Web to allow particle physicists to interact seamlessly with colleagues at universities and laboratories all around the world. This breakthrough has a massive impact on the global economy and societal ties that few other innovations can equal.

 

  • The Grid Computing: Particle physics experiments generate massive volumes of data, which necessitates the use of cutting-edge computing equipment. The Grid is a revolutionary particle physics computing platform that combines the power of hundreds of thousands of separate computing farms to allow physicists to manage and process unprecedented volumes of data around the globe. Medicine and finance are two examples of industries that create vast volumes of data and can benefit from improved computing technologies. To process this large volume of data, particle physicists took advantage of the computers located all around the world and build a virtual supercomputer – making it the latest computing machine for the particle physicists

Industry:

  • Biomedicine and drug development: The role of protein in biological processes is paramount. Thus, to find the root cause of diseases we need to identify the responsible protein and understand its structure. This process is the prerequisite for any drug development. The technologies used for particle physics experiments are proving to be of great help in this endeavour of analyzing the protein structure.

 

  • Power Transmission: With the advancement of accelerator technology, significant progress has been made in the area of superconducting materials. Now, these innovations are being applied in the sector of power transmission. The advantage of using superconducting materials over the conventional wire results in transmitting more electricity while keeping the power losses at a minimum.

To summarize, we can say particle accelerator research and development has fuelled innovation for over a century. As a result, applications with huge societal benefits have emerged. A brighter future is on the horizon.

References:

Post COVID Career Prospects of M.Sc. Tech (Statistics and Data Science)

In this current scenario i.e. post COVID period data science becomes a new era. Data science has played a vital role in making the policies or decision making in real life world. It is one of the trendiest jobs across the globe in terms of future scope and career stability. Data science is an interdisciplinary subject that includes the use of statistics, big data analytics, machine learning and related aspects in order to understand the problem or phenomena with respect to a set of real-world data. The thrust areas of data science are fraud and risk detection, healthcare, internet search, targeted advertising, advanced image recognition, speech recognition, airline route planning etc. Under health care sector it is having different applications such as medical image analysis, genetics & genomics, drug development, virtual assistance for patients and customer support. Thus, data science has major demand in many organization around the globe. In today’s career-oriented world, students are confused on choosing the right subject after completing graduation that will help them to get a good placement in the job enterprise. After graduation, numerous options like master degree in the general subjects, or in various professional courses confuse the students to take the right decision. Today, both students and their parents are seeking for job-centric programs, though general study programs are mostly preferred as their first choice. A good choice can be a program that is a combination of both general and professional courses. It is always better to choose a program that is a natural progression of the existing skills and qualifications along with some professional development skills.

The Role of Statistics and Data Science in Today’s World:
The pursuit of a career in Statistics is in high demand today. With a degree in Statistics, career opportunities are boundless. Statisticians have been known as Economists, Scientists, Mathematicians, Field Investigator or Qualitative Researcher. The ‘data-hungry’ modern world now calls them data analyst, business analysts, data scientists, quality and risk analysts. Data Science has become an integral contributor to success in career opportunities. Data Scientists and Data Analytics are in high demand in today’s job world. Data Science based enterprises are the largest companies in the entire world. The famous websites like Google, Amazon, and Facebook, use data science to create algorithms that improve customer satisfaction, which in turn maximizes the profit. Thus, with a degree in Data Science, one can work with high-tech companies like Google, Amazon, LinkedIn, Facebook, banking and financial companies like ICICI Bank, Axis Bank, or research firms like McKenzie, Deloitte.

So, according to the trend of the modern job world, the best option is to choose a program in Statistics or Data Science. But, can one pursue both Statistics and Data Science at the same time? Yes, the Department of Mathematics, Adamas University is offering such a program which is a combination of both Statistics and Data Science. The program name is ‘M.Sc. (Tech.) in Statistics and Data Science’. This program is also a combination of both general and professional courses, Statistics, being a general subject and Data Science, a professional course.

M.Sc. Tech (Statistics and Data Science) program is a two years (four semesters) post-graduate degree course which combines Statistics, Mathematics and Computer Science with applications to Data Science and Data Analysis to meet the demand of today’s job world. From Probability Theory and Statistics to Statistical Inference, from Applied Statistics to Statistical Modeling, from Problem Solving to Number Theory, from Computer Programming to Data Mining, the program is also offering a number of optional papers, a few of which are Big Data Analytics, Cryptography and Network Security, and Artificial Intelligence. Besides these, the program also offers summer internship and Project/Dissertation. In summer internship, a student may choose to visit relevant institute or industry according to the availability. The project/Dissertation helps the students to explore and strengthen the understanding of fundamentals through practical application of theoretical concepts.
On completion of the program, a student will
• Be acquainted with the various Statistical tools useful for Data Analysis
• Develop programming skills
• Acquire knowledge on Data Analytics and Data Mining
• Learn the concepts of Data Structures
• Develop a conceptual understanding on Network Security
Eligibility Criteria for the Program:
Graduate student having Statistics/Mathematics/Economics/Physics as compulsory subject, or graduate students in Data Science, or students having a B.Tech. degree in IT/CSE/ECE or BCA or other relevant stream with at least 50% marks are eligible to apply for this course.

Career Prospects:
From careers in IT sector to technological companies, Data Science professionals can choose their career in a numerous field including business, industry, agriculture, government and private sectors, computer science, and software development.
A few job roles available for a student after completion of the program are:
(i) Data Scientist: Data scientists also called analytical experts utilize their skills in both social science and technology to manage all kinds of data. A data scientist involves in arranging and analyzing disorganized and unstructured data, from numerous sources like smart devices, social media feeds, emails, industry, health science, environmental data.
(ii) Data Analyst: The role of a Data Analyst is to figure out a market trend. The data analyst serves as a caretaker for an organization’s data and as such shareholders are able to understand data and use it to make tactical business decisions.
(iii) Statistician: A Statistician deals with gathering, analyzing and interpreting to aid in many businesses and decision-making process. The Statisticians apply statistical models and methods to real-world problems. They analyse, gather and interpret data to help draw valid conclusions.
(iv) Forecasting Analyst: The task of a Forecasting Analyst includes tracking, analyzing, and evaluating operations in order to provide accurate forecasts. Forecasting analysts use current data of the company to predict future level production and sales. By examining inventory levels, demand for products or services, and speed of production, they ascertain a company’s optimal production levels and possible future sales.
(v) Data Manager: Data Manager are involved in making and implementing policies for effective data management, framing management techniques for quality data collection to confirm adequacy, accuracy and validity of data. They are also involved in planning and executing efficient and secure procedures for data management and data analysis with attention to all procedural aspects

Conclusion:
From above discussion we can see that a student with master degree in Statistics and Data Science has numerous career opportunities and so this program is recommended to graduate students seeking for a good career opportunity in the present scenario of the job world.

Green Hydrogen – A New Fuel of the Future

India is witnessing the multitude of benefits of renewable energy, including increased access to electricity, reduced local air pollution and carbon dioxide emissions, and lower energy imports. There are easy ways to boost renewable energy’s position in the grid as well as end-use industries like transportation and industrial. Nonetheless, there remain economic, technological, and feasibility challenges to fully electrifying all existing energy usage, limiting the extent to which renewable power may directly replace fossil fuels. Hydrogen is already widely employed, particularly as an industrial feedstock in the production of ammonia-based fertilizers. Most of the hydrogen is produced through methane reforming, which results in large carbon dioxide emissions. Carbon capture and storage (CCS) technologies can collect these emissions, but they are yet undeveloped in India.

Hydrogen produced using electrolysis powered by renewable energy—green hydrogen—and its use in fuel cells has a long history of promising a pathway to a global clean energy economy yet failing to deliver. Electrolysis, where water (H2O) is split into its component parts using electricity, is an alternate means of processing. While there is important research activity on electrolysis, photolysis and biogenic hydrogen production methods, these low-carbon emission technologies have not yet been implemented on a scale. This is partially due to today’s low-carbon hydrogen production costs that are higher than fossil fuel-based hydrogen or other fossil-fuel alternatives. However, it is possible that these costs could achieve equilibrium in the future with green hydrogen in desirable regions undercutting grey hydrogen. This is made more possible in India, where tariffs on renewable energy are already among the lowest in the world and natural gas supplies are low and expensive. The capital cost of electrolysers, along with energy costs, is another significant factor for reducing the cost of green hydrogen. With a ramp-up in implementation, these are likely to continue to decline, since most electrolysers are produced on a relatively small scale today.

Fresh water resources make up around 2.5 percent of the total amount of water on the planet. As shown in figure 1, fortunately, the accessible seawater resource is 39 times that of fresh water. Water use due to electrolysis should, however, not be viewed as gradually using up the water resource, because when green hydrogen is oxidized (by combustion or via a fuel cell) it yields the same amount of water as was originally electrolyzed. This may enter the atmosphere as water vapor or be condensed at the point of use and recovered as liquid water. Moreover, the production of green hydrogen simultaneously produces oxygen in the exact amount required to oxidize the hydrogen, this is an important characteristic, because atmospheric oxygen depletion is contributing to global warming. 

Figure 1: Annual water requirement of Green Hydrogen production relative to                 Earth’s water resources. [Source: https://www.sciencedirect.com/science/article/pii/S1464285921006581]
Figure 1: Annual water requirement of Green Hydrogen production relative to Earth’s water resources.
[Source: https://www.sciencedirect.com/science/article/pii/S1464285921006581]

Green hydrogen provides India with major opportunities to grow into a new field of renewable energy technology, building domestic manufacturing expertise to supply the Indian market as well as overseas. Electrolysers would be the principal technology of significance. There are currently no major Indian producers of this technology, with electrolysers being imported from Germany, Norwegian or Japanese companies currently in use in India.

Globally, the momentum for hydrogen and fuel cell technology is rising, with market forecasts ranging from $2.5 trillion to $11.7 trillion by 2050. India has the capacity to manufacture more than its domestic demand, large quantities of low-cost, low green hydrogen. Significant economic value could be produced by exploiting the country’s diverse range of hydrogen production feedstocks to produce hydrogen for export. To manufacture hydrogen for sale, India has many strategic advantages, as depicted in the figure 2 below:

Figure 2: Strategic Advantages of Green Hydrogen in India; Source: Self-evaluation
Figure 2: Strategic Advantages of Green Hydrogen in India; Source: Self-evaluation

Green hydrogen is therefore widely viewed as the ‘net zero’ fuel for our future energy system, with green oxygen replenishing the associated consumption of atmospheric oxygen. However, it should be noted that some of the hydrogen will be required as a feedstock (e.g., for ammonia and methanol production) rather than as a fuel, and some of the green oxygen will be applied to industrial processes and water oxygenation as opposed to being vented to the atmosphere. For instance, hydrogen and nitrogen will be carried into plants in the form of ammonium, and oxygen will be used by the steel industry. It is therefore important to identify synergies between the electrolysers’ need for water and the use of both green hydrogen and oxygen, because these could accelerate the deployment of electrolysis in the limited period, we have left to combat climate change.

As a result, green hydrogen and its derivatives are projected to play a crucial role in global decarbonization at scale due to their adaptability, which allows them to be used in a variety of applications and decarbonizes hard-to-abate sectors.

Know the Game: Augment your career with Skills, Competencies, and Expertise in the niche segment of Health Geo-Informatics

The WHO has taken pledge to help countries and partners in making informed public health choices more quickly and to spread geospatial knowledge throughout the organization by connecting maps, apps, data, and people. Because of this change in emphasis, organizations all around the world are depending more and more on location intelligence to make smarter public health decisions. Human services and health geoinformatics occupations are in greater demand than ever.

John Snow’s ground-breaking work serves as an example of the effectiveness of mapping and geographic systems in addressing the cholera pandemic. The World Health Organization (WHO) has a long history of analyzing spatial distribution and risk factor patterns, identifying, preventing, and controlling diseases, and enhancing the effectiveness of public health initiatives. Making timely and trustworthy judgments that have the potential to save many lives is made possible by using GIS to connect spatial representation and public health planning. To name a few, 15 of the 17 health-related SDGs rely on GIS, for example, by monitoring air, water quality, and sanitation, neglected tropical diseases (malaria, guinea worm, snake bites), Polio, as well as health emergencies. Geoinformatics is defined as an academic discipline or career of working with geographical data for better understanding and interpretation of human interaction with the earth’s surface. It encompasses several technologies, approaches, processes, and methods to interpret and discourse spatial questions that necessitate spatial sense to address it. ESRI comments that “Hundreds of thousands of organizations in virtually every field are using GIS to make maps that communicate, perform analysis, share information, and solve complex problems around the world. This is changing the way the world works.”

Geoinformatics – Future Science
Figure 1. Geoinformatics – Future Science (Conceptualized and compiled by Dr. Anu Rai)

With its underlying capacity, Geoinformatics is emerging as a billion-dollar industry and offers lucrative opportunities to its professionals and trainers. In order to promote better public health planning and decision-making, geospatial technology, namely Health Geoinformatics, offers spatial representation of data. It is a niche segment of Geoinformatics and has significant uses in the fields of medicine and global health, but many nations currently limited or no access to these advantages in order to improve their health information systems. However, in post pandemic era, WHO and partner countries aggressively acknowledge and recommend the application of Geoinformatics in addressing public health issues.  WHO has taken pledge to help countries and partners in making informed public health choices more quickly and to spread geospatial knowledge throughout the organization by connecting maps, apps, data, and people. The WHO GIS Centre for Health wants to have a direct and long-lasting influence on the public by increasing its engagement with partners. Supporting geospatial data and analytics to enhance adherence and stewardship with WHO Standard Operating Procedures for maps and Web GIS applications are a few examples of the specific services offered by WHO. The purpose of such services is to improve national, regional, and analytical data as well as the health information system in order to boost the Member States’ and Partners’ effective use of GIS. Because of this change in emphasis, organizations all around the world are depending more and more on location intelligence to make smarter public health decisions. Human services and health geoinformatics occupations are in greater demand than ever. In order to forecast and evaluate industry trends utilizing a range of data and pro-actively build solutions and messaging to address important issues, drivers, and challenges, health GIS analysts or public health solution managers work closely with teams in varied domains of public health, human services, hospitals, insurance, managed health care systems, and environmental health. Despite corporate and public jobs and entrepreneurial opportunities, GIS analysts are highly engaged in investigating, understanding, and developing new businesses in areas underserved or not currently served with GIS applications in the health and human services space. This creates a new field of opportunity for work with product development as a customer advocate for the requirements of the health and human services sector.

In my academic career as an educator of Geography and Geoinformatics, I have often noticed curiosity among youngsters about career opportunities with the Health Geography and Geoinformatics, irrespective of the discipline and domain of undergraduate and postgraduate degrees they hold. I would answer that if you are interested to play with the nuts and bolts of spatial health science, the Post Graduate Program on Geography and Geoinformatics is a good option for you. You may select diverse fields of Health Geoinformatics depending on the expertise of the domain varying from map making to app development. You can also opt for jobs in Public Health firms that include diverse skill-based jobs in the field of marketing development and testing and even entrepreneurship. Research-based course experience also opens huge job prospects in development and planning commission, scientists in HRD, and other research institutions in India and abroad. Application of neo-geographical tools, statistical algorithms, machine learning, multi-criterion decision-making techniques, computer-programming, SQLs, text-analytics and learning and practices of GIS and statistical packages that enable GI Scientists to solve the multifaceted real-life problem has opened extensive career opportunities to practitioners of geoinformatics in the field of public health data science as well. Health data scientists, data analysts, big data analysts, spatial data analysts, etc. are some of the lucrative jobs paying high salary packages to deserving candidates. So, if spatial logic of health attracts you, Health Geoinformatics is the best option to augment your career with skills, competencies, and expertise.

For such more examples you may also visit the sites of:

How to Make Pharmacy Graduate Resume

Pharmacists are at a pinnacle in the ability to manage, cure and prevent disease. Today, the pharmacist plays an essential role as part of the healthcare management team along with doctors. The post covid episode of the market produce a huge requirement of fresher students in healthcare management system especially in sterile manufacturing like vaccine or other injectables like monoclonal antibodies. India practically ensures a bright future for the fresher students who are entering the profession. Sooner the fourth-year students will graduate from Pharmacy school. There is only one step left between the students and the job of their dreams. And there should not be any mistake for getting ready for the interview. Foremost part to entry through the gateway to get those positions in industry required one small document the Resume. Listed below are some basic steps involved in writing of a standard quality resume:

  1. The resume should represent about the candidate but it should do so in a certain format and cover specific areas sometimes specified by the school also.
  2. The information in resume should be clear, succinct and mistake-free. grammatical errors that a fresh pair of eyes might catch that’s why review by other persons is needed. using white or off-white paper for your resume is essential.
  3. Reachable contact numbers and email id should be provided along with the full name.
  4. Any kind of unethical practice like exaggerating or claiming things like research activities or scholarships that you are not involved with can put candidates blacklisted to the company, that’s why fabrication of the resume unethically is not good and unwise.
  5. Try to incorporate the research activities you have done in your b. schooling in your resume. If you have published any review or research article in peer review journal may be with your teachers or you have received any prize please mention. There is nothing wrong with describing these or any awards you have received.
  6. get register your name in students’ pharmaceutical associations or may be in IPA, IPGA etc. this kind of membership also increases the friend circle of the newcomer.
  7. Place the most important information about yourself first, but make sure your honours and awards are near the top of the list as well. Describe anything different about your strong point like leadership capability that will allow you to get interested to the recruiter.
  8. If you’re appearing for an interview where experience is mandatory for a particular field just make caps or bold the areas related to that.
  9. In the cover letter the reason for applying the job is required to mention and which should be brief and to the point. Sometimes the recruiter asked to mention the exact position applied like executive or sr. executive so that also should be written.
  10. Though the length of your resume varies depending on an individual’s experiences, but generally it should be within one page or two maxima. All the details you are providing should be pointwise and in a brief manner. The skill and strength should be mentioned in case of fresher candidate and using the powerful words like Detail-orientated, Communication, Time-management, Empathy, Teamwork 
  11. References can be provided along with the addresses and mobile numbers but better to give the contacts of some senior faculty or managers you know.
  12. some other points should not get missed out like experience in MS word, excel, and database management system etc. and reverse chronological order for writing.
  13. Lastly the status of the pharmacy license of PCI should also be mentioned.

Digitalization in Marketing Process-A New Skill in Marketing Specialization

Marketing is the process that satisfies human and social needs. It is nothing but a value-creation process. If we look into the marketing process, the job of most marketers is to design and develop the value in such a way that attracts customers and makes them happy buying. But this scenario is changing very rapidly due to the pandemic and the huge development of digital technology. Now market and marketing processes are more digitalized than the conventional marketing system. The job of a salesman is changing to the digital selling process. Marketers need not make a flow-up plan, it is automatically set up by the technology and responses are coming within a specific time. So, the process becomes more hybrid through embarked digitalization in the system. Therefore, it is imperative that using of digital technology in marketing and its associated function is a substitute for marketing success. Looking into this, concept marketers are focusing more on digital expert professionals than the salesman. Due to the huge demand for this, manpower is scarce. This is one part of the other way the process of marketing is also changing. Like the development of promotion strategy, communicate with the customers and find out the most effective methods for approaching customers. Though all these are experience stages, on the other side to get succeed in the fast-paced environment they always look into the audience’s requirements, it is difficult to stay ahead of the audience because market nature is monopolistic.

The recent trend in the Marketing Process:

Mass marketing converted into customized marketing and especially influencer marketing which is more common through digital technology like artificial intelligence, and machine learning, Marketers identify the preference of buying of customers and they try to influence them by offering more customized products. Therefore, targeting an individual is much easier than the conventional process. Development of user-generated content is another tool to identify prospects, it is a technique that allows the customer to design their product, and using digital space marketers publish those products on the web and counts the most effective design out of the available design and makes the product based on these design.  Companies also do marketing through publicize the video content and using web analytics they publish it through various social media like various web pages, Facebook, Twitter, and LinkedIn, and personalizing the email. This video makes confidence the buyer about product information, brand, service, and other components associated with the product. It applies to business to business and business to consumer and both the process learn and evaluate the impact of promotion using video content in social media which makes their marketing promotion faster.   The current market depends on millennials and Gen Z, they are more inclined toward digital process and most of them prefer digital buying process, not only digital buying but also other parts of marketing, they prefer digitalization. Therefore, to enhance their buying power, there is a need for mobile-optimized digital services which may be an important part for business owners and houses who are looking to attract fast-paced tech-savvy generations.

Ephemeral content is a new arena of digital marketing. Here company publishes its information through social media and they always stay on social media through standard posts, videos, and live events. Customer is not able to show the message if they do not save it or achieve it. Therefore, it makes curiosity customers give more concentration on the information. It is an effective platform for marketing campaigns.

Application of Digital Technology in Marketing

 Artificial Intelligence in marketing is mainly developed with the help of three main marketing disciplines research, strategy, and action, and three levels of AI intelligence, that is, mechanical, thinking, and feeling AI. While mechanical AI entails automation of repetitive and routine tasks mainly covering market research, strategy, and standardization, thinking AI relates to processing data for new insights and decision-making, and feeling AI refers to interactions with humans or analyzing human feelings and emotions. Another, important techniques are big data analytics, using these techniques marketers predict the outcome of the customers and it also techniques which help marketers to identify the preference, maintain inventory management, and manage distribution and logistics system. Machine learning is another digitalized technique that helps marketers to do proper market segmentation, it processes customer data and analyzes it for discovering recurring patterns across various features. It helps to do proper clustering of different various demographic segments and helps to measure the preference difference between various demographic segments. Using blockchain analysis marketers maintain the logistics system of the firms and maintain a smooth and faster delivery system. One other important area used by blockchain technology like user verification, Blockchain can be employed through advertisement networks and reduce the interface of agents and middlemen and help those users who want the information by clicking through the ad system and combat fraud. It helps advertisers to identify the source of fraud and advertisers can make more user interface design.

Therefore, digital technology must be not only an effective tool for modern marketing but in the future, it should be the only way for business growth and survival. Most large-scale firms have started their marketing practices and maintain all the marketing processes from taking the order to supplying feedback through digital space. In India, most middle-order firms were trying to adopt the blended process, with a few parts of technology-based and another part traditional because of the nature of Indian consumers. It is a challenging task for a small firm because its market and investment level is low. Therefore, the marketing professionals need to develop some skills that small firms can be benefitted without much more investment. Last but not the list, it can be commented that the traditional skill of marketing will not work for long. Digitalized skills need to learn by the marketing professionals at the time of career selection. Few specialized skills need to be imparted to get a better market understanding.  

Potentiality of Corn Bio-Fuel in Indian Future Mobility

Corn is grown and appropriated not as a food but also put to use to generate ethanol, which can be used as fuel to operate internal combustion engines in order to avoid the usage of exhaustible resources. The price of the liquid fuels has been increasing gradually in India, it causes harmful emissions as well, and the effect can be noticed if we see the air quality index of different states. In order to search for an alternative, we need to shift our view towards bio-diesel which can be used as the substitute of the exhaustible resources and it produces less harmful gases. One of the potential resources for producing bio-diesel in India is corn, which is largely cultivated crop in Northern India. The total number of vehicles have been increased from 5.4 million to 210 million between 2005 and 2015 in India. Due to the uncontrolled mobility in urban areas, the environment has been affected from the exhaust gases so badly in many states. In few major metropolitan cities, the pollution level has crossed the permissible limit of PM2.5, which is set up by WHO. According to the WHO database, 14 out of 15 most polluted cities in the world, belongs to India only, Kanpur tops the list of the most polluted cities in the entire world with 173 micrograms per cubic meter and Delhi secures the sixth position with pollution level of 141 micrograms per cubic meter according to the PM2.5 database in 2016. Total 11% of the carbon emission is accounted from the transportation; it was 24% in 1971. The effective move, which was taken by the Indian government, was switching to CNG and India operates maximum buses on the road, fuelled by CNG. This country owns 11.75% of total natural gas operated vehicles and holds the third place, running behind China (23%) and Iran (17%). By 2030, India is aiming to be the third largest automobile manufacturing country after USA and China and this is the high time to impart innovations to this specific domain, which can cause less PM, CO2, NOx and SOx emission. Biofuels have great future prospects in developing nations due to energy insecurity. Large agricultural sector can be a good support in order to produce biodiesels from crops. Shuit et. Al [3] stated that the fourth assessment report of IPCC concludes that the reason behind global warming for last 50 years, mostly due to emission of harmful CO2, nitrous oxide and methane. Transportation has been identified as the major source of air pollution in megacities since last century. The bad effect of motorization leads more petroleum-based fuels to be used in road transport that directly affects the human health. On the basis of an analysis, which has been done by taking data of 50 countries and 35 urban areas that vehicle per capita has been increased at the same rate as income per capita. Countries like India, China and Pakistan where growth rate of passenger cars are double than that of income per capita. India has secured the place in top 10 among biggest emitters of atmospheric pollutants. Road fuel consumption is nearly doubled in every ten years since 1975. Biofuel can be used to meet the future needs of mobility and it can safeguard the environment and human health as it does not contain any sulphur or metals, which contribute to the acid rain by producing sulphuric acid. Peng et al. investigated different parameters and the limited data projected that exhaust emission in terms of total vapour phase hydrocarbons, total carbonyl compounds, total poly aromatic hydrocarbons etc. were lower when biodiesel was used. Global energy demand will be increased by 4.6%, almost 70% of it will be utilized in global emerging markets and developing economics. Global CO2 emission is heading towards the second largest annual increase ever in 2021, coal demand is set exceed the demand of 2019 and approaching towards the 2014 peak. Utilization of natural gas is being increased by 3.1% in 202. Renewable sources retain the success in these days in power, industry, transport and heating sectors. A report named Net Zero by 2050: A road map for the global energy sector stated that 7 Gt of CO2 has been emitted from global transport sector in 2019 and it is expected that it will be around 5.5 Gt by 2030 if we use the other environment friendly fuel and 0.7 Gt by 2050.  As per the report published by Indian government on World Bio-Fuel Day named Bio-Fuels towards Atmanirbhar Bharat  it is concluded that biodiesels can enhance India’s energy security and reduce petroleum dependency. Few potential resources have been identified in order to get bio fuel from the crops and government is implementing policies to spread the awareness among citizens. India aiming to produce 20% ethanol blended biofuel by 2030 and 3% contributor to global ethanol production. Therefore, many initiatives have been taken to produce bio-fuel at higher rate in India using different techniques and waste management strategies.

Apart from USA and Brazil, many countries have been producing bio-ethanol to meet the continuously increasing need. In India, per year 426 crore litres bio-ethanol is being produced from molasses-based distilleries and 258 crore from grain-based distilleries. It has been proposed to increase 760 crore and 740 crore respectively. Indian government has given emphasize on producing bio-ethanol from grains in last few years.

The world’s corn production capacity is near about 1.05 million thousand tons, whereas the USA tops the list of producing corn which is estimated at 360,252 thousand tons. In 2020, India has produced 30,250 thousand tons of corn. It was 5101 thousand tons in 1971 and it is growing at the rate of 4.67%. According to ICAR, India secures 4th in area and 7th in production among the maize producing countries. Corn production area has been increased to 9.2 million ha during 2018-2019. Average productivity has increased by 5.42 times from 547 kg/ha to 2965 kg/ha, productivity in India is almost half of the world.

Madhya Pradesh (15%) and Karnataka (15%) clench the first position in terms of highest cornfield area accompanied by Maharashtra (10%), Rajasthan (9%) and Uttar Pradesh (5%). Whereas Andhra Pradesh secures the top position in terms of corn production, it is as high as 12 tonne per ha. Looking at the statistics of corn production and the potentiality for bio-ethanol to be used as fuel, it is said that corn can be one of the major grain resources in India to produce ethanol. Chemical composition of corn revels that it contains 72% starch, 9.5% fiber,9.5% protein and 4.3% oil. It is investigated that 56 lbs of corn can produce 30.7 lbs of starch or 35 lbs of sweeteners or 21 lbs of polylactic acid polymers and can produce 2.87 gallons of ethanol. This ethanol can be used with diesel to improve the emission and it also fulfils the need of the alternative fuel in the automobile sector in India.

Ethanol production from corn: Farm to Fermentation

Corn has to undergo many processes to be considered ready for ethanol production. The first step is to remove the kernels from the cob, this process is known as postharvest where all the stones, soil, sticks, etc. are removed by means of scalpers. A huge bio-technical is associated followed by three steps –

  • Starch is to be converted to fermentable sugar by means of milling, liquefaction, and saccharification (enzyme-based).
  • Fermentation, where yeast helps these sugars to convert into ethanol.
  • Generated ethanol is taken out from other by-products using the distillation process.

Fig. 2: Schematic diagram of ethanol production from corn [icon courtesy: www.nounprojects.com]

Milling is the first step of the biotechnical process and it can be classified into two main categories namely wet milling and dry milling. The main purpose of the process is to break-down the starch into simple sugar components whereas the liquefaction process is done in order to make the simple sugar soft for an efficient enzymatic digestion. Indian government has paid attention to establish such plants to produce ethanol to be used with diesel to meet the demand. And, obviously corn can be the one of the resources for the same.

Better Emission

This is the need of the hour to replace authentic fuel in automobiles as it emits harmful components like CO, CO2, NO2 etc. Bio-fuel helps engine to perform and emit less pollutant. Many additives can be used to improve the performance in terms of power generation and speed.  Manigadan S. et al. [12] investigated the emission characteristics of corn oil blended with methyl ester and oxygenated additives. In this study, BSFC and BP have been increased by 6.3% and 22.01% respectively. And, 16% reduction in NOx emission has been observed, Titanium di-oxide (TiO2) has been used as additive. But, many oxygenated nanoparticles like aluminium oxide etc. can be used to improve the performance, as well.