Dilemmas in Global Politics: India’s Foreign Policy Challenges in Afghanistan

The world woke up on the morning of 15 August 2021, to bear witness to one of the biggest turning points in the history of the post-Cold War world. The sudden withdrawal of U.S.-NATO forces coupled with the takeover of the administrative power by the Taliban since their rule from 1996 to 2001 in Afghanistan has led to a huge political and strategic uncertainty in the region.   Not long after the end of the World Wars does one find Afghanistan being sucked into the vortex of great power rivalry, the repercussions of which have come to be felt even in current times.   The land was ravaged by the violent repression of political power syndrome. The dramatic resurgence of the Taliban government led most of the regional powers to recalibrate their approaches and influences in protecting their national interests in the country.

Besides this, so far as regional interests are concerned, one has to take note of the strong and differentiated regional power interests of Russia, China, India, Pakistan, and Iran which trigger certain questions to shape the prospects of Afghanistan. They are – first, the withdrawal creates new opportunities for influence and control for Russia; secondly, the withdrawal is a net gain but not an unequivocal victory for China, which has new opportunities to extend its Belt and Road Initiative (BRI), address regional security threats, engage in significant economic activities, and challenge the ambitions of the United States and raised a big question about American dependability and assurance as an ally and security partner. Thirdly, the withdrawal represents the least optimal outcome for India and its troubled relationship with Pakistan, but there are opportunities to engage with AUKUS and the Quadrilateral Security Dialogue. Finally, despite the ongoing tensions with the Taliban, Iran may take advantage of the withdrawal in its international posturing toward the United States.

 This new environment led Indian policymakers to a serious quandary and raised a big question regarding India’s role and influence in Afghanistan under the new miliew. Although, ambiguity and flexibility are essential attributes of diplomatic life, however striking a balance between moralism and realism requires constant calibration. Although New Delhi has considered the Afghan Taliban as Pakistan’s proxy, engagement with them has been a regular feature of the Indian policymaker.

India can undertake four policy options in terms of its’ future with Afghanistan, firstly the Realist policy, where New Delhi need to shift theatre from Kashmir to Afghanistan and should work towards building a Delhi-Washington-Moscow Consensus to ensure peace and stability in Afghanistan. Secondly, the use of soft power as a major means to stay out of the Afghan quagmire, knowing fully well it can also endanger India’s investments in Afghanistan under the Taliban. Thirdly, smart power strategy, where India should come out of its Panipat Syndrome and pursue a proactive policy to safeguard India’s national interest and needs to engage with the new government in Afghanistan without damaging its carefully nurtured image of a trustworthy neighbour, which in other words means that it will neither confer legitimacy on the Taliban nor will it erode the legitimacy of India.

Fourthly, India should take on a mediating role among the different nations anxious to involve themselves in Afghanistan and produce a formula that would help maintain Afghanistan’s neutrality and ensure that it becomes a buffer zone to prevent further Chinese expansionism towards South Asia and by which it can preserve its national interests on its own without any butterfly effect.

Amidst the ambiguity over international recognition of the new Taliban government in Afghanistan, questions have arisen as to the fate of the South Asian Association for Regional Cooperation (SAARC). The largely dysfunctional South Asian organization’s future will largely depend on the road that Afghanistan takes.

Mathematics in Operations Research and its Career Prospects

Operations research is an experimental and applied science devoted to observing, understanding, and predicting the behaviour of purposeful man-machine systems; and operations-research workers are actively engaged in applying this knowledge to practical problems in business, government, and society. – OR Society of America

Source of figure: https://images.app.goo.gl/gGkCaRsLc99RXPD98

Most of the students in our education system might wonder whether they will ever use the mathematics which they learn from the studied courses. Students frequently asked a core question, such as, is any of the analysis, algebra, calculus, combinatorics, math programming, etc. really going to be of value in our daily life?

One exciting area of applied mathematics called Operations Research (OR) may give the answer of the above question. OR integrates the knowledge of numerous disciplines, like mathematics, statistics, computer science, engineering, economics, and social sciences to solve real-world problems. The notion of OR is applied from inventory to manufacturing; finance to marketing; routing to queuing; distribution to scheduling; data storage management to service measurement and reliability to artificial intelligence; agriculture to defence and among others using innovative and mathematical theories (analysis, algebra, calculus, probability, etc).

OR can be defined as the decision-making science. It is also known as Operational Research or Management Science or Industrial Engineering. There is no general process in OR to solve all the mathematical models related to real-world problems. One of the most prominent methods is linear programming which is useful to design a model with linear objective function and constraints. The techniques for solving linear programming problem (LPP) was developed by George Dantzig in the early 1950s and this is led to increasing interest of OR applications in business.

More than Mathematics:

Since the OR models are mathematical nature, people think that an OR study is always rooted in mathematical observations. But an OR technique should not be biased to start with a specific mathematical model before its proper justification of use (H.A.Taha, Operations research; an introduction, Pearson Education).  For an example, since linear programming is a successful process, people tend to use it as the tool of choice for modelling any kind of situations. Such an approach leads to mathematical model which may be take away from real situation. Thus, it is imperative that we first analyse the available data using simple processes whenever possible (e.g., aggregation, histograms, charts, etc.). Actually, most of the cases solutions are rooted in people but not in technology. Consequently, any solution that does not consider human behaviour may not be an appropriate solution.

OR with software library: There are numerous commercial software packages to solve the OR models. A few examples of such software are LINGO, AMPL, CPLEX Optimization Studio, MPL Modeling System, Gurobi. NEOS, COIN-OR, Matlab, R, Mathematica and Python, etc.

Scope of OR: OR has wide range applications in industry, government sectors, business hubs and many other organisations. Some important fields are:

  • In industry-manufacturing (production planning, assembly line, inventory control, quality control), production management (location and size of warehouse, retails outlet, logistics, transportation problem), airline industry, health-care systems, telecommunications, etc.
  • In Agriculture– Farm economics (optimal allocations of crop production, efficient production pattern), farm management (allocations of limited resources like as labour, water supply, working capital, seeds, etc).
  • In Defence-Selection of weapon system against enemy, ensuring minimum use of aviation gasoline, optimal strategy to win the battle.
  • In Marketing-Selection of product-mix, export planning, advertising and media selection, travelling salesman, sales effort allocation and assignment.
  • In Finance and accounting– Investment and portfolio management, public accounting, capital budgeting, financial planning
  • In personnel management– allocation of optimal manpower, determination of equitable salaries, skill development and retention.
  • In Government-Urban and housing problems, military, energy, economic planning, utilization of natural resources.

Job prospects: There are plenty of jobs after completion of specific programme with OR. Few of them are

  • Operations Research Analyst
  • Project Manager
  • Teaching Assistant
  • Research Assistant
  • Consultant
  • Software Engineer
  • Security Review Operations Analyst
  • Production manager
  • Optimal designer
  • Controller of network routing, transportation

Covid-19 impact:

 From the last two years, Covid-19 pandemic has disrupted all our lives, causing havoc to our health-care systems, education sectors, industries and especially economical systems. As with the early days of OR, presently multi-disciplinary and multi-locational teams of OR scientists have responded to the challenge, developing new models and methods for forecasting and tracing the spread of the epidemic, for vaccine allocation and distribution, etc. as part of the global effort to control the pandemic. (Janny Leung, IFORS News, Vol 17, No. 1, 2022).

      Recently, Bueno et al. (Luís Felipe Bueno, Antonio Augusto Chaves , Luiz Leduino Salles-Neto, Francisco Nogueira Calmon Sobral, Horacio Hideki Yanasse, IFORS News, Vol 17, No. 1, 2022) developed a web app for helping managements to plan classrooms considering social distancing by using  mixed-integer and nonlinear optimization approaches.

Why should be in course curriculum:

OR successfully provides a systematic and scientific approach to all kinds of service operations, defence, manufacturing, government. It is a splendid area for under graduate and post graduate students of mathematics to use their knowledge and skills to solve complex real-world problems in creative ways.  It has an impact on them to take critical decisions. Numerous companies in industry require OR analysts to apply mathematical techniques to a wide range of challenging questions in the said domain.

Biomass based biofuel generation future in India

Out of some of the hottest trends that have been on the top lists for quite a while are choosing an entrepreneur as the primary occupation and doing an eco-friendly business.

The need of renewable energy is increasing in the world due to rapidly growing human population, urbanization and huge consumption of fossil fuels. Fossil fuel reserve is very limited, and the reserve is getting depleted day by day. The primary sources of energy that can be used as the alternative of fossil fuels are wind, water, solar and biomass-based energy.

Currently biomass as a feedstock for biofuel production is gaining importance. Biomass energy is supplying about 10-15% of total energy demand of the present world. Biomass feedstocks include organic material such as wood, wood-based energy crops, grass, lignucellulosic materials like wheat straw, rice straw, sugarcane baggase, corn, microalgae, agricultural residues, municipal wastes, forest product wastes, paper, cardboard and food waste. Biomass can be converted into biofuels by thermochemical and biochemical conversion. Based on the types of feedstocks or biomass the biofuels derived are divided into different groups i.e. 1st generation, 2nd generation, 3rd generation. 1st generation biofuels mainly extracted from the food crop-based feedstocks like wheat, barley, sugar and used for biodiesel and by fermentation to produce bioethanol. But first-generation biofuels face the “fuel vs food” debate and also the net energy gain is negative.  1st generation biofuels production systems also have some economic and environmental limitations. To overcome the drawbacks of 1st generation biofuels 2nd generation biofuels have been generated from the non-food crops-based feedstocks like organic wastes, lignocellulosic biomass etc. For biofuel production from these sources rigorous pretreatments are required to make the feedstocks suitable for biodiesel production. This is the major drawback of 2nd generation biofuel production. Then the attention of the world has been shifted towards 3rd generation biofuel production entails “algae-to biofuels”. Microalgae is easy to cultivate, has higher photosynthetic rate and growth rate than other plants and there is no food vs. feed dilemma present of using microalgae as feedstock for biofuel production. Presently the attention is also given towards fourth generation biofuel. The former concept of third generation of biofuel deals with the conversion process itself from the microalgae to biofuel. The fourth generation of biofuel concept deals with development of microalgal biotechnology via metabolic engineering to maximize biofuel yield. Fourth generation biofuel uses genetically modified (GM) algae to enhance biofuel production. In comparison with third generation in which the principal focus is in fact processing an algae biomass to produce biofuel, the main superior properties of the fourth are introducing modified photosynthetic microorganisms which in turn are the consequence of directed metabolic engineering, through which it is possible to continuously produce biofuel in various types of special bioreactors, such as photobioreactors.

Biomass has the highest potential for small scale business development and mass employment. Characterized by low-cost technologies and freely available raw materials, it is still one of the leading sources of primary energy for most countries. With better technology transfer and adaptation to local needs, biomass is not only environmentally benign, but also an economically sound choice. Bio-based energy can be expected to grow at a faster pace in the years to come. 

On the Biomass Energy sector, the India government committed to increasing the share of non-fossils fuel in total capacity to 40% by 2030. India produces about 450-500 million tonnes of biomass per year. Biomass provides 32% of all the primary energy use in the country at present. A total capacity of 10145 MW has been installed in the Biomass Power and Cogeneration Sector. The Installed Capacity of Biomass IPP is 1826 MW together with the Installed Capacity of Bagasse Cogeneration is 7547 MW and the Installed Capacity of Non-Bagasse Cogeneration is 772 MW. 

The eco-friendly business has lots of benefits, by going green with your business you’re promoting the Earth’s safety from potential environmental catastrophe, you support innovation and concomitantly producing green energy.

The Government of India has been constantly bound on increasing the use of clean energy sources. This does increase a better future and at the same time creates employment opportunities too. According to The Ministry of New and Renewable Energy (MNRE), India’s total installed capacity of renewable energy is 90 GW excluding hydropower. Also, it states that 27.41 GW will be added. Renewable Energy in India is a great asset to Energy Contribution, yet India still needs to work a lot in Renewable Energy Sectors.

Future of Brand Communication and Management

Branding have been evolved hundreds of years, may be more than this. The meaning and prospect of this brand came into use over a decade. The meaning and narratives of brand communication has been progressed and it is not limited to a particular products and services but the horizon of branding widens its spectrum in a larger array. Here, will reconnoitres the concept of branding which have been advanced to a new paradigm, and would venture on what’s coming next.

 

The word Brand is etymologically derived from the word “Brandr”, a term from Ancient Norse meaning “to burn”. Around 950 A.D. the term “brand” denotes to a burning piece of wood. By 1300s this word was used to mean a torch, a factor which burns a piece of wood. This term brand further adds to denote to scorch the cattle of ownership by the year 1500s. The ownership status quo been conferred if their cattle got misplaced, ranched or lost. So, the development of using some similar trait of identifying their respective cattle were used. They had very simple, familiar identification and quick remembrance which lead and pave the way for ‘logo’ which is indispensable for brand identity and image.

Brand communicates to inform, persuade, guide, teach, evoke, enlighten, remind and gives a new insight about a product, service, company, organization to its stakeholders and persuades to pursue the positive perception of the products, service and companies’ strength and core values.

For the drive of easier comprehension, let us put some of those changes in the form of pointers:

  1. The Preponderance of Digital Media: with the advent of digital media, the traditional form of paid media push marketing strategy is no longer valid and lost its conventional power to hold and influence consumers.
  2. Personal Branding: the role of Influencer’s which is in the rise of social media platforms has changed the phenomenon of the conventional definition of personal branding. Social media and branding also the future of branding in a positive room which enables every company and organization to maintain and update their social media pages of triggering and disseminating useful information (Facebook. Instagram and Twitter).
  3. Brand Extension: it creates credibility and consumers gets varied scope of opportunity if the brand positively follows up for further extension.
  4. Brand Association: the top of the mind awareness (recall) and aided awareness (recognition) seems credible in digital age with the help of niche marketing strategy and native advertising.
  5. Co-Branding: this creates the blurred boundaries between global market products and services. So, no matter what, there is a prospect avenue for business collaborations both nationally and internationally. With the rapid changes in the pattern of brand communication, definitely this also need to be focussed international + local products collaboration (because generally the known businesses allies with the established brands).
  6. Brand Equity: Simply, the brand awareness, positioning and loyalty leads to brand equity and paved the way for understanding these three factors in a more diligent manner (recognition/recall/ aided awareness/ TOMA etc).
  7. Naming of the Brand: this gone beyond the graphics but the interactive media content spuriously based on the art, aesthetics, idea and creativity proves to be right in contemporary times. It more emphasizes the ideation blended with virtual reality and augmented reality.
  8. Viral Marketing: this strategy is a new norm to reach out to potential consumers through snowballing and e word of mouth.
  9. SEO: it enhances the website traffic to update the page of the website and searches through hashtags and keywords. It aims to unpaid traffic rather than paid traffic.
  10. Outsourced Delivery: there are few companies and creative bunch of groups who takes this up on behalf of reputed and established brands. The young professionals who is proficiency of digital media marketing, search engine optimization and algorithms related to augmented reality and virtual reality can be put forth for positive brand image.

The rise of the usage and availability of internet across geographic boundaries with economic viability, enhances the platforms of social media which is a driving factor for the next stage of the progression of branding. Point to be noted that the definition of conventional consumer or customers have changed drastically, there is a bent towards the coexistence and participatory. They do not want to consume the products or content anymore, rather tries to participate and so as the future of brand communication not to communicate anymore but to act, feel and intermittence. The power of influencers of social media brands like Instagram, YouTube and Facebook frequently depend on their users to aid and to create their value and how they should be perceived by the public. It further gives them their identity and positive image and enhances the brand durability. Various content sites like Buzzfeed, Amazon, The Huffington post and Yelp be contingent on reviewers to deliver their utmost convincing content. In this regard, many web-based companies and organizations handles their respective brand image and gets loyalty and revenue through active consumers which is unmatched and some thing interesting in these recent times. On the other hand, viral marketing, search engine optimization, and outsourced delivery permits their companies and organizations to have expansion visibility which reduces the cost of products delivery and saves millions of bucks and investment on advertising and infrastructure.

Basically, to conclude, if there is a brand admiration established by the consumers and they would like to see the advancement of prospect category of a specific product, then they must go ahead. This improvement on positive branding and effective brand communication may bring various advantages to one’s business, for example, good growth, profit and a prospect to meet their clients’ who might need to know the advancement of companies’ brand image. If an excellent inkling or creativity for new product is there to experiment that certainly the consumers/customers may accept or like, then probably yes, the companies must give it a try!

THE NANO SCIENCE AND ITS CONTRIBUTION IN TREATING CANCER

Nanoscience involves the study of the control of matter on an atomic and molecular scale. This molecular level investigation is at a range usually below 100 nm. In simple terms, a nanometer is one billionth of a meter and the properties of materials at this atomic or subatomic level differ significantly from properties of the same materials at larger sizes. Although, the initial properties of nano materials studied were for its physical, mechanical, electrical, magnetic, chemical and biological applications, recently, attention has been geared towards its pharmaceutical application, especially in the area of drug delivery. According to the definition from NNI (National Nanotechnology Initiative), nanoparticles are structures of sizes ranging from 1 to 100 nm in at least one dimension. However, the prefix “nano” is commonly used for particles that are up to several hundred nanometers in size. Nanocarriers with optimized physicochemical and biological properties are taken up by cells more easily than larger molecules, so they can be successfully used as delivery tools for currently available bioactive compounds.

Cell-specific targeting can be achieved by attaching drugs to individually designed carriers. Recent developments in nanotechnology have shown that nanoparticles (structures smaller than 100 nm in at least one dimension) have a great potential as drug carriers. Due to their small sizes, the nanostructures exhibit unique physicochemical and biological properties (e.g., an enhanced reactive area as well as an ability to cross cell and tissue barriers) that make them a favorable material for biomedical applications. It is difficult to use large size materials in drug delivery because of their poor bioavailability, in vivo solubility, stability, intestinal absorption, sustained and targeted delivery, plasma fluctuations, therapeutic effectiveness etc. To overcome these challenges nanodrug delivery have been designed through the development and fabrication of nanostructures. Nanoparticles have the ability to penetrate tissues, and are easily taken up by cells, which allows efficient delivery of drugs to target site of action. Uptake of nanostructures has been reported to be 15–250 times greater than that of microparticles in the 1–10 um range. Nanoparticles can mimic or alter biological processes (e.g., infection, tissue engineering, de novo synthesis, etc. These devices include, but not limited to, functionalized carbon nanotubes, nanofibers, self-assembling polymeric nano constructs, nanomembranes, and nano-sized silicon chips for drug, protein, nucleic acid, or peptide delivery and release, and biosensors and laboratory diagnostics. Various polymers have been used in the design of drug delivery system as they can effectively deliver the drug to a target site and thus increase the therapeutic benefit, while minimizing side effects. The controlled release (CR) of pharmacologically active agents to the specific site of action at the therapeutically optimal rateand dose regimen has been a major goal in designing such devices. The drug is dissolved, entrapped, encapsulated or attached to a NP matrix and depending upon the method of preparation, nanoparticles, nanospheres or nanocapsules can be obtained. Nanocapsules are vesicular systems in which the drug is confined to a cavity surrounded by a unique polymer membrane, while nanospheres are matrix systems in which the drug is physically and uniformly dispersed. Biodegradable polymeric nanoparticles have attracted considerable attention as potential drug delivery devices in view of their applications in the controlled release of drugs, their ability to target particular organs/tissues, as carriers of DNA in gene therapy, and in their ability to deliver proteins, peptides and genes through a per oral route of administration. Recent advances in the application of nanotechnology in medicine, often referred to as nanomedicine, may revolutionize our approach to healthcare. Cancer nanotechnology is a relatively novel interdisciplinary area of comprehensive research that combines the basic sciences, like biology and chemistry, with engineering and medicine. Nanotechnology involves creating and utilizing the constructs of variable chemistry and architecture with dimensions at the nanoscale level comparable to those of biomolecules or biological vesicles in the human body. Operating with sub-molecular interactions, it offers the potential for unique and novel approaches with a broad spectrum of applications in cancer treatment including areas such as diagnostics, therapeutics, and prognostics.

Nanotechnology also opens pathways to developing new and efficient therapeutic approaches to cancer treatment that can overcome numerous barriers posed by the human body compared to conventional approaches. Improvement in chemotherapeutic delivery through enhanced solubility and prolonged retention time has been the focus of research in nanomedicine. The submicroscopic size and flexibility of nanoparticles offer the promise of selective tumor access. Formulated from a variety of substances, nanoparticles are configured to transport myriad substances in a controlled and targeted fashion to malignant cells while minimizing the damage to normal cells. They are designed and developed to take advantage of the morphology and characteristics of a malignant tumor, such as leaky tumor vasculature, specific cell surface antigen expression, and rapid proliferation.

Nanotechnology offers a revolutionary role in both diagnostics (imaging, immune-detection) and treatment (radiation therapy, chemotherapy, immunotherapy, thermotherapy, photodynamic therapy, and anti-angiogenesis). Moreover, nanoparticles may be designed to offer a multifunctional approach operating simultaneously as an effective and efficient anticancer drug as well as an imaging material to evaluate the efficacy of the drug for treatment follow-up. In recent years, nanomedicine has exhibited strong promise and progress in radically changing the approach to cancer detection and treatment.

Know the Game: Augment your career with Skills, Competencies, and Expertise in the niche segment of Health Geo-Informatics

The WHO has taken pledge to help countries and partners in making informed public health choices more quickly and to spread geospatial knowledge throughout the organization by connecting maps, apps, data, and people. Because of this change in emphasis, organizations all around the world are depending more and more on location intelligence to make smarter public health decisions. Human services and health geoinformatics occupations are in greater demand than ever.

John Snow’s ground-breaking work serves as an example of the effectiveness of mapping and geographic systems in addressing the cholera pandemic. The World Health Organization (WHO) has a long history of analyzing spatial distribution and risk factor patterns, identifying, preventing, and controlling diseases, and enhancing the effectiveness of public health initiatives. Making timely and trustworthy judgments that have the potential to save many lives is made possible by using GIS to connect spatial representation and public health planning. To name a few, 15 of the 17 health-related SDGs rely on GIS, for example, by monitoring air, water quality, and sanitation, neglected tropical diseases (malaria, guinea worm, snake bites), Polio, as well as health emergencies. Geoinformatics is defined as an academic discipline or career of working with geographical data for better understanding and interpretation of human interaction with the earth’s surface. It encompasses several technologies, approaches, processes, and methods to interpret and discourse spatial questions that necessitate spatial sense to address it. ESRI comments that “Hundreds of thousands of organizations in virtually every field are using GIS to make maps that communicate, perform analysis, share information, and solve complex problems around the world. This is changing the way the world works.”

Geoinformatics – Future Science
Figure 1. Geoinformatics – Future Science (Conceptualized and compiled by Dr. Anu Rai)

With its underlying capacity, Geoinformatics is emerging as a billion-dollar industry and offers lucrative opportunities to its professionals and trainers. In order to promote better public health planning and decision-making, geospatial technology, namely Health Geoinformatics, offers spatial representation of data. It is a niche segment of Geoinformatics and has significant uses in the fields of medicine and global health, but many nations currently limited or no access to these advantages in order to improve their health information systems. However, in post pandemic era, WHO and partner countries aggressively acknowledge and recommend the application of Geoinformatics in addressing public health issues.  WHO has taken pledge to help countries and partners in making informed public health choices more quickly and to spread geospatial knowledge throughout the organization by connecting maps, apps, data, and people. The WHO GIS Centre for Health wants to have a direct and long-lasting influence on the public by increasing its engagement with partners. Supporting geospatial data and analytics to enhance adherence and stewardship with WHO Standard Operating Procedures for maps and Web GIS applications are a few examples of the specific services offered by WHO. The purpose of such services is to improve national, regional, and analytical data as well as the health information system in order to boost the Member States’ and Partners’ effective use of GIS. Because of this change in emphasis, organizations all around the world are depending more and more on location intelligence to make smarter public health decisions. Human services and health geoinformatics occupations are in greater demand than ever. In order to forecast and evaluate industry trends utilizing a range of data and pro-actively build solutions and messaging to address important issues, drivers, and challenges, health GIS analysts or public health solution managers work closely with teams in varied domains of public health, human services, hospitals, insurance, managed health care systems, and environmental health. Despite corporate and public jobs and entrepreneurial opportunities, GIS analysts are highly engaged in investigating, understanding, and developing new businesses in areas underserved or not currently served with GIS applications in the health and human services space. This creates a new field of opportunity for work with product development as a customer advocate for the requirements of the health and human services sector.

In my academic career as an educator of Geography and Geoinformatics, I have often noticed curiosity among youngsters about career opportunities with the Health Geography and Geoinformatics, irrespective of the discipline and domain of undergraduate and postgraduate degrees they hold. I would answer that if you are interested to play with the nuts and bolts of spatial health science, the Post Graduate Program on Geography and Geoinformatics is a good option for you. You may select diverse fields of Health Geoinformatics depending on the expertise of the domain varying from map making to app development. You can also opt for jobs in Public Health firms that include diverse skill-based jobs in the field of marketing development and testing and even entrepreneurship. Research-based course experience also opens huge job prospects in development and planning commission, scientists in HRD, and other research institutions in India and abroad. Application of neo-geographical tools, statistical algorithms, machine learning, multi-criterion decision-making techniques, computer-programming, SQLs, text-analytics and learning and practices of GIS and statistical packages that enable GI Scientists to solve the multifaceted real-life problem has opened extensive career opportunities to practitioners of geoinformatics in the field of public health data science as well. Health data scientists, data analysts, big data analysts, spatial data analysts, etc. are some of the lucrative jobs paying high salary packages to deserving candidates. So, if spatial logic of health attracts you, Health Geoinformatics is the best option to augment your career with skills, competencies, and expertise.

For such more examples you may also visit the sites of:

Digitalization in Marketing Process-A New Skill in Marketing Specialization

Marketing is the process that satisfies human and social needs. It is nothing but a value-creation process. If we look into the marketing process, the job of most marketers is to design and develop the value in such a way that attracts customers and makes them happy buying. But this scenario is changing very rapidly due to the pandemic and the huge development of digital technology. Now market and marketing processes are more digitalized than the conventional marketing system. The job of a salesman is changing to the digital selling process. Marketers need not make a flow-up plan, it is automatically set up by the technology and responses are coming within a specific time. So, the process becomes more hybrid through embarked digitalization in the system. Therefore, it is imperative that using of digital technology in marketing and its associated function is a substitute for marketing success. Looking into this, concept marketers are focusing more on digital expert professionals than the salesman. Due to the huge demand for this, manpower is scarce. This is one part of the other way the process of marketing is also changing. Like the development of promotion strategy, communicate with the customers and find out the most effective methods for approaching customers. Though all these are experience stages, on the other side to get succeed in the fast-paced environment they always look into the audience’s requirements, it is difficult to stay ahead of the audience because market nature is monopolistic.

The recent trend in the Marketing Process:

Mass marketing converted into customized marketing and especially influencer marketing which is more common through digital technology like artificial intelligence, and machine learning, Marketers identify the preference of buying of customers and they try to influence them by offering more customized products. Therefore, targeting an individual is much easier than the conventional process. Development of user-generated content is another tool to identify prospects, it is a technique that allows the customer to design their product, and using digital space marketers publish those products on the web and counts the most effective design out of the available design and makes the product based on these design.  Companies also do marketing through publicize the video content and using web analytics they publish it through various social media like various web pages, Facebook, Twitter, and LinkedIn, and personalizing the email. This video makes confidence the buyer about product information, brand, service, and other components associated with the product. It applies to business to business and business to consumer and both the process learn and evaluate the impact of promotion using video content in social media which makes their marketing promotion faster.   The current market depends on millennials and Gen Z, they are more inclined toward digital process and most of them prefer digital buying process, not only digital buying but also other parts of marketing, they prefer digitalization. Therefore, to enhance their buying power, there is a need for mobile-optimized digital services which may be an important part for business owners and houses who are looking to attract fast-paced tech-savvy generations.

Ephemeral content is a new arena of digital marketing. Here company publishes its information through social media and they always stay on social media through standard posts, videos, and live events. Customer is not able to show the message if they do not save it or achieve it. Therefore, it makes curiosity customers give more concentration on the information. It is an effective platform for marketing campaigns.

Application of Digital Technology in Marketing

 Artificial Intelligence in marketing is mainly developed with the help of three main marketing disciplines research, strategy, and action, and three levels of AI intelligence, that is, mechanical, thinking, and feeling AI. While mechanical AI entails automation of repetitive and routine tasks mainly covering market research, strategy, and standardization, thinking AI relates to processing data for new insights and decision-making, and feeling AI refers to interactions with humans or analyzing human feelings and emotions. Another, important techniques are big data analytics, using these techniques marketers predict the outcome of the customers and it also techniques which help marketers to identify the preference, maintain inventory management, and manage distribution and logistics system. Machine learning is another digitalized technique that helps marketers to do proper market segmentation, it processes customer data and analyzes it for discovering recurring patterns across various features. It helps to do proper clustering of different various demographic segments and helps to measure the preference difference between various demographic segments. Using blockchain analysis marketers maintain the logistics system of the firms and maintain a smooth and faster delivery system. One other important area used by blockchain technology like user verification, Blockchain can be employed through advertisement networks and reduce the interface of agents and middlemen and help those users who want the information by clicking through the ad system and combat fraud. It helps advertisers to identify the source of fraud and advertisers can make more user interface design.

Therefore, digital technology must be not only an effective tool for modern marketing but in the future, it should be the only way for business growth and survival. Most large-scale firms have started their marketing practices and maintain all the marketing processes from taking the order to supplying feedback through digital space. In India, most middle-order firms were trying to adopt the blended process, with a few parts of technology-based and another part traditional because of the nature of Indian consumers. It is a challenging task for a small firm because its market and investment level is low. Therefore, the marketing professionals need to develop some skills that small firms can be benefitted without much more investment. Last but not the list, it can be commented that the traditional skill of marketing will not work for long. Digitalized skills need to learn by the marketing professionals at the time of career selection. Few specialized skills need to be imparted to get a better market understanding.  

Fuel Biotechnology: Enhancement in Biofuel Production in Cyanobacteria Using CRISPR Genome Editing Technology

Abstract

Very recently with the increasing price of fuel and due to its limited availability, the scientific community and several industries are now concern about finding a different source of fuel generation. Biofuel due its easy generation, cost effectiveness is now the main attraction of scientists and several industries. Among different types of organism cyanobacteria are the perfect choice for biofuel production of their photosynthetic capacity, easy gene manipulation and lack of dependency on fertile land. There are several ways to generate biofuel from cyanobacteria among them the newly developed CRISPR technology is an efficient way to generate biofuel from cyanobacteria. This review highlights the ways through which biofuel can be generated efficiently using CRISPR technology.

Introduction

In the 21st century demand of biofuel production is really high because of its huge energy generation capacity and many other industrial purposes. Very recently due to excessive requirement and use of fossil fuels, a huge number of environmental as well as economical concerns are arising. So, there is a need of finding alternative sources of fuel production. One of the best solutions to this problem is to increase the use of biomass generated biofuel. Biomass generated biofuel is eco-friendly and as well as cost effective. The production of biofuel is drawing a lot of attention from various industries. The production of biofuel as an alternative of fossil fuel is growing rapidly over the past few years. To produce butanol and ethanol, in the fermentation process starch or sugar as a feed stock can be used. To produce biodiesel, transesterification of lipids (obtained from soybeans, seeds of canola and others) is used.

There are different sources for biofuel production but photosynthetic organisms are considered one of the best sources for it because atmospheric carbons can be easily obtained from the harnessed light energy can be used to direct the obtained carbon towards the biofuel production. Cyanobacteria are highly favored among them because of their excellent amenability towards genetic manipulation.

Over the past decade there are different approaches has been made for production of biofuel in cyanobacteria. However recently with the advancement in Clustered Regularly Interspaced Short Palindromic Repeats (also known as CRISPR) – dependent techniques brought a new breakthrough in the gene manipulation in cyanobacteria thus increasing the biofuel production.

CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats)/ Cas9 system is originally a prokaryotic defense system which is used against phage attack (Javed et al., 2019). It has been employed as an important instrument for site directed mutagenesis. CRISPR consists of small repetitive sequence of DNA flanked by small segments of spacer DNA. Spacer DNA generally found in bacteriophage or plasmid and it is integrated into bacterial genome because of its encounter with a bacterial virus or plasmid. The Cas are CRISPR associated genes and these genes translates into nuclease or helicase protein with the task of cutting or unwinding DNA. The CRISPR system functions by integrating phage or plasmid of DNA sequence into his own genome. In future when it again encounters with that phage again, this system will recognize it using the transcribed RNA sequences and a Cas enzyme is directed to cleave that DNA (deoxy ribonucleic acid) at a particular sequence. The Cas9 which is a cleaving enzyme. It has the ability to produce a cut the two active sites of each single strand of a dsDNA.

The mechanism of CRISPR/Cas9 system was discovered by two scientists Doudna and Charpentier (Doudna and Charpentier 2014). According to their report bacteria utilizes the CRISPR/Cas9 system in order to defend themselves from phage attack. After a bacterium gets attacked by a phage, the bacterial DNA produces a RNA which is almost 20nt long and is complementary to the phage DNA. It is known as crRNA. Along with that a protein is also produced which is called Cas9. Depending on the mechanism sometimes along with CRISPR and Cas9 there is another RNA and it is known as trans-activating crispr RNA (also known as tracrRNA). The tracrRNA and crRNA both are linked with a hairpin loop like structure. The actual role of tracrRNA is still now but it was found that it has some sort of role in stabilizing the crRNA with complementary pairing. The crRNA (also known as crisprRNA) binds to the complementary sequence of the target DNA. This complementary region is known as proto spacer sequence. After the binding of crRNA with the target DNA the link between crRNA and tracrRNA is brokrn by RNase3.Interaction between crRNA and target DNA in turn activates the catalytic activity of Cas9 and Cas9 binds and cleaves the dsDNA at a specific site (known as PAM site).There are two ways of repairing the cleaved DNA- one is Non Homologous End Joining (also known as NHEJ) and the other is Homology Directed Repair or HDR. The crRNA and tracrRNA and Cas9, all of these together makes a powerful tool of genome editing. The hairpin loop structure between crRNA and tracrRNA provides the advantage of genome editing. Till now the CRISPR-Cas9 system has been applied in wide range of scientific researches and because of its high accuracy this tool can be used as a method of enhancing the biofuel production in cyanobacteria.

Results & Discussion

Recent advancement in synthetic-biology allows us to modify, edit heterologous host and by doing so increase the productivity of biofuels, increase their yield at industrial scale with a very low cost. The yield of biofuel production can be increase with the help of metabolic engineering, a high yield can be achieved by optimizing the metabolic flux. Very recently to enhance the biofuel production, synthetic biology and metabolic engineering have been implemented in cyanobacteria.

Few years back a synthetic pathway of isobutanol was genetically engineered by Astumi et al in synechococcus7942 (Astumi et al., 2009) to produce isobutanol and isobutaldehyde directly from Carbon dioxide (CO2) and the productivity was increased due to overexpression of Rubisco (ribulose 1,5-bisphosphate carboxylase/oxygenase) enzyme. Similarly, during ethanol production pyruvate decarboxylase (also known as pdc) and alcohol dehydrogenase (adh) are the two most important genes. In 2009, pdc and adh genes set were integrated at the psbA2 locus of synechococcus 6803 and it was exposed under the control PpsbA2, a light inducible promoter (Singh et al., 2009). These genetically engineered cyanobacteria produced 550mg/L ethanol under high intensity of light (~1000 μE/m2 /s). Ethanol now a days is the most common biofuel globally.

Recently biodiesel has drawn a lot of attention. Biodiesel which contains long chain of alkyl esters and are refers to as animal fat-based diesel fuel. Biodiesel production can be achieved by reaction of lipids (animal fat and vegetable oil) with esters of alcohol producing fatty acids. Cyanobacteria are a good source of diacylglycerol (DAG) and triacylglycerol (TAG). After the extraction of DAG and TAG they can be used as biodiesel (Radakovits et al., 2010; Sheng et al., 2011). In spite of all these advantages in genetically engineered cyanobacteria there is a major disadvantage of it is that while studying the growth curve of genetically engineered cyanobacteria, it has been observed that these genetically engineered strains are very weak during lag phase and that could reduce the yield of fatty acids in an industrial bioreactor.

In a recent study, it has been observed that photosynthetic Synechococcus elongatus PCC 7942 and Synechocystis sp. PCC 6803 are the two strains which could convert inorganic carbon to free fatty acids (Roessler et al., 2009). Another approach towards it was the insertion of an acyl-acyl carrier protein (ACP) thioesterase gene into Synechosystis which produce a high yield of free fatty acids (183-211 mg/L) in addition to constrain the metabolic flux for production of free fatty acids (FFA) the acetyl-CoA carboxylase (ACC) was over expressed. Also, fatty acid-activating genes were knocked out to prevent the degradation of free fatty acids (Liu et al., 2011). Recently Synechocystis sp. PCC 6803 and Synechococcus elongatus PCC 7942 these two strains were identified that can utilize the exogenous fatty acids and secrete endogenous fatty acids (FA) into the culture medium (Kaczmarzyk et al., 2010). In future these kinds of approach can be further expanded and more modified and optimized strains of cyanobacteria can be produced which will increase the production of free fatty acids.

Discussion

Cyanobacteria is the one of the oldest photosynthetic microorganisms that are found in nature. When it comes to biofuel production this microorganism has received a bit of special attention than other microorganisms. Short generation, easy to maintain, easy genetic manipulation are the few qualities that makes cyanobacteria special from any other microorganism and an obvious choice for biofuel production.

Biofuel research in cyanobacteria is still very new. Many challenges and opportunities are there while working on issues related to gene manipulation. Light harvesting and CO2 fixation efficiency. To improve efficiency of cyanobacteria towards biofuel production CRISPR (Clustered regularly interspaced short palindromic repeats) – Cas is a very new and promising cutting-edge tool. CRISPR is an effective tool in genome editing in cyanobacteria and have been investigated in Synechocystis sp. PCC6803 (Singh et al., 2016). Synthetic biology and metabolic engineering can be the key of producing eco-friendly biofuels to meet the global energy requirement. Based on recent advanced in CRISPR-Cas technology it is hoped that cleaner and eco-friendly energies will be produced in much amount which will be able to meet the market requirement. Thus, this genome editing technology may pave the way toward fundamental discoveries in biology, with applications in all branches of biotechnology.

References

Atsumi, S., Higashide, W., & Liao, J. C. (2009). Direct photosynthetic recycling of carbon dioxide to isobutyraldehyde. Nature biotechnology, 27(12), 1177-1180.

Behler, J., Vijay, D., Hess, W. R., & Akhtar, M. K. (2018). CRISPR-based technologies for metabolic engineering in cyanobacteria. Trends in biotechnology, 36(10), 996-1010.

Chen, H., Bjerknes, M., Kumar, R., & Jay, E. (1994). Determination of the optimal aligned spacing between the Shine–Dalgarno sequence and the translation initiation codon of Escherichia coli m RNAs. Nucleic acids research, 22(23), 4953-4957.

Chwa, J. W., Kim, W. J., Sim, S. J., Um, Y., & Woo, H. M. (2016). Engineering of a modular and synthetic phosphoketolase pathway for photosynthetic production of acetone from CO2 in Synechococcus elongatus PCC 7942 under light and aerobic condition. Plant Biotechnology Journal, 14(8), 1768-1776.

Dexter, J., & Fu, P. (2009). Metabolic engineering of cyanobacteria for ethanol production. Energy & Environmental Science, 2(8), 857-864.

Dismukes, G. C., Carrieri, D., Bennette, N., Ananyev, G. M., & Posewitz, M. C. (2008). Aquatic phototrophs: efficient alternatives to land-based crops for biofuels. Current opinion in biotechnology, 19(3), 235-240.

Dittmann, E., Gugger, M., Sivonen, K., & Fewer, D. P. (2015). Natural product biosynthetic diversity and comparative genomics of the cyanobacteria. Trends in microbiology, 23(10), 642-652.

Javed, M. R., Noman, M., Shahid, M., Ahmed, T., Khurshid, M., Rashid, M. H., & Khan, F. (2019). Current situation of biofuel production and its enhancement by CRISPR/Cas9-mediated genome engineering of microbial cells. Microbiological research, 219, 1-11.

Kaczmarzyk, D., & Fulda, M. (2010). Fatty acid activation in cyanobacteria mediated by acyl-acyl carrier protein synthetase enables fatty acid recycling. Plant physiology, 152(3), 1598-1610.

Khan, A. Z., Bilal, M., Mehmood, S., Sharma, A., & Iqbal, H. (2019). State-of-the-art genetic modalities to engineer cyanobacteria for sustainable biosynthesis of biofuel and fine-chemicals to meet bio–economy challenges. Life, 9(3), 54.

Lai, M. C., & Lan, E. I. (2015). Advances in metabolic engineering of cyanobacteria for photosynthetic biochemical production. Metabolites, 5(4), 636-658.

Li, H., Shen, C. R., Huang, C. H., Sung, L. Y., Wu, M. Y., & Hu, Y. C. (2016). CRISPR-Cas9 for the genome engineering of cyanobacteria and succinate production. Metabolic engineering, 38, 293-302.

Liu, X., Sheng, J., & Curtiss III, R. (2011). Fatty acid production in genetically modified cyanobacteria. Proceedings of the National Academy of Sciences, 108(17), 6899-6904.

Radakovits, R., Jinkerson, R. E., Darzins, A., & Posewitz, M. C. (2010). Genetic engineering of algae for enhanced biofuel production. Eukaryotic cell, 9(4), 486-501.

Roessler, P. G., Chen, Y., Liu, B., & Dodge, C. N. (2009). U.S. Patent Application No. 12/333,280.

Sheng, J., Vannela, R., & Rittmann, B. E. (2011). Evaluation of methods to extract and quantify lipids from Synechocystis PCC 6803. Bioresource technology, 102(2), 1697-1703.

Singh, V., Chaudhary, D. K., Mani, I., & Dhar, P. K. (2016). Recent advances and challenges of the use of cyanobacteria towards the production of biofuels. Renewable and Sustainable Energy Reviews, 60, 1-10.

Whitton, B. A., & Potts, M. (Eds.). (2007). The ecology of cyanobacteria: their diversity in time and space. Springer Science & Business Media.

Potentiality of Corn Bio-Fuel in Indian Future Mobility

Corn is grown and appropriated not as a food but also put to use to generate ethanol, which can be used as fuel to operate internal combustion engines in order to avoid the usage of exhaustible resources. The price of the liquid fuels has been increasing gradually in India, it causes harmful emissions as well, and the effect can be noticed if we see the air quality index of different states. In order to search for an alternative, we need to shift our view towards bio-diesel which can be used as the substitute of the exhaustible resources and it produces less harmful gases. One of the potential resources for producing bio-diesel in India is corn, which is largely cultivated crop in Northern India. The total number of vehicles have been increased from 5.4 million to 210 million between 2005 and 2015 in India. Due to the uncontrolled mobility in urban areas, the environment has been affected from the exhaust gases so badly in many states. In few major metropolitan cities, the pollution level has crossed the permissible limit of PM2.5, which is set up by WHO. According to the WHO database, 14 out of 15 most polluted cities in the world, belongs to India only, Kanpur tops the list of the most polluted cities in the entire world with 173 micrograms per cubic meter and Delhi secures the sixth position with pollution level of 141 micrograms per cubic meter according to the PM2.5 database in 2016. Total 11% of the carbon emission is accounted from the transportation; it was 24% in 1971. The effective move, which was taken by the Indian government, was switching to CNG and India operates maximum buses on the road, fuelled by CNG. This country owns 11.75% of total natural gas operated vehicles and holds the third place, running behind China (23%) and Iran (17%). By 2030, India is aiming to be the third largest automobile manufacturing country after USA and China and this is the high time to impart innovations to this specific domain, which can cause less PM, CO2, NOx and SOx emission. Biofuels have great future prospects in developing nations due to energy insecurity. Large agricultural sector can be a good support in order to produce biodiesels from crops. Shuit et. Al [3] stated that the fourth assessment report of IPCC concludes that the reason behind global warming for last 50 years, mostly due to emission of harmful CO2, nitrous oxide and methane. Transportation has been identified as the major source of air pollution in megacities since last century. The bad effect of motorization leads more petroleum-based fuels to be used in road transport that directly affects the human health. On the basis of an analysis, which has been done by taking data of 50 countries and 35 urban areas that vehicle per capita has been increased at the same rate as income per capita. Countries like India, China and Pakistan where growth rate of passenger cars are double than that of income per capita. India has secured the place in top 10 among biggest emitters of atmospheric pollutants. Road fuel consumption is nearly doubled in every ten years since 1975. Biofuel can be used to meet the future needs of mobility and it can safeguard the environment and human health as it does not contain any sulphur or metals, which contribute to the acid rain by producing sulphuric acid. Peng et al. investigated different parameters and the limited data projected that exhaust emission in terms of total vapour phase hydrocarbons, total carbonyl compounds, total poly aromatic hydrocarbons etc. were lower when biodiesel was used. Global energy demand will be increased by 4.6%, almost 70% of it will be utilized in global emerging markets and developing economics. Global CO2 emission is heading towards the second largest annual increase ever in 2021, coal demand is set exceed the demand of 2019 and approaching towards the 2014 peak. Utilization of natural gas is being increased by 3.1% in 202. Renewable sources retain the success in these days in power, industry, transport and heating sectors. A report named Net Zero by 2050: A road map for the global energy sector stated that 7 Gt of CO2 has been emitted from global transport sector in 2019 and it is expected that it will be around 5.5 Gt by 2030 if we use the other environment friendly fuel and 0.7 Gt by 2050.  As per the report published by Indian government on World Bio-Fuel Day named Bio-Fuels towards Atmanirbhar Bharat  it is concluded that biodiesels can enhance India’s energy security and reduce petroleum dependency. Few potential resources have been identified in order to get bio fuel from the crops and government is implementing policies to spread the awareness among citizens. India aiming to produce 20% ethanol blended biofuel by 2030 and 3% contributor to global ethanol production. Therefore, many initiatives have been taken to produce bio-fuel at higher rate in India using different techniques and waste management strategies.

Apart from USA and Brazil, many countries have been producing bio-ethanol to meet the continuously increasing need. In India, per year 426 crore litres bio-ethanol is being produced from molasses-based distilleries and 258 crore from grain-based distilleries. It has been proposed to increase 760 crore and 740 crore respectively. Indian government has given emphasize on producing bio-ethanol from grains in last few years.

The world’s corn production capacity is near about 1.05 million thousand tons, whereas the USA tops the list of producing corn which is estimated at 360,252 thousand tons. In 2020, India has produced 30,250 thousand tons of corn. It was 5101 thousand tons in 1971 and it is growing at the rate of 4.67%. According to ICAR, India secures 4th in area and 7th in production among the maize producing countries. Corn production area has been increased to 9.2 million ha during 2018-2019. Average productivity has increased by 5.42 times from 547 kg/ha to 2965 kg/ha, productivity in India is almost half of the world.

Madhya Pradesh (15%) and Karnataka (15%) clench the first position in terms of highest cornfield area accompanied by Maharashtra (10%), Rajasthan (9%) and Uttar Pradesh (5%). Whereas Andhra Pradesh secures the top position in terms of corn production, it is as high as 12 tonne per ha. Looking at the statistics of corn production and the potentiality for bio-ethanol to be used as fuel, it is said that corn can be one of the major grain resources in India to produce ethanol. Chemical composition of corn revels that it contains 72% starch, 9.5% fiber,9.5% protein and 4.3% oil. It is investigated that 56 lbs of corn can produce 30.7 lbs of starch or 35 lbs of sweeteners or 21 lbs of polylactic acid polymers and can produce 2.87 gallons of ethanol. This ethanol can be used with diesel to improve the emission and it also fulfils the need of the alternative fuel in the automobile sector in India.

Ethanol production from corn: Farm to Fermentation

Corn has to undergo many processes to be considered ready for ethanol production. The first step is to remove the kernels from the cob, this process is known as postharvest where all the stones, soil, sticks, etc. are removed by means of scalpers. A huge bio-technical is associated followed by three steps –

  • Starch is to be converted to fermentable sugar by means of milling, liquefaction, and saccharification (enzyme-based).
  • Fermentation, where yeast helps these sugars to convert into ethanol.
  • Generated ethanol is taken out from other by-products using the distillation process.

Fig. 2: Schematic diagram of ethanol production from corn [icon courtesy: www.nounprojects.com]

Milling is the first step of the biotechnical process and it can be classified into two main categories namely wet milling and dry milling. The main purpose of the process is to break-down the starch into simple sugar components whereas the liquefaction process is done in order to make the simple sugar soft for an efficient enzymatic digestion. Indian government has paid attention to establish such plants to produce ethanol to be used with diesel to meet the demand. And, obviously corn can be the one of the resources for the same.

Better Emission

This is the need of the hour to replace authentic fuel in automobiles as it emits harmful components like CO, CO2, NO2 etc. Bio-fuel helps engine to perform and emit less pollutant. Many additives can be used to improve the performance in terms of power generation and speed.  Manigadan S. et al. [12] investigated the emission characteristics of corn oil blended with methyl ester and oxygenated additives. In this study, BSFC and BP have been increased by 6.3% and 22.01% respectively. And, 16% reduction in NOx emission has been observed, Titanium di-oxide (TiO2) has been used as additive. But, many oxygenated nanoparticles like aluminium oxide etc. can be used to improve the performance, as well.

 

Career Prospects in Cyber security

Multinational companies are spending fortunes to protect and secure their systems, sensitive data, networks, and privacies from cybercriminals. After the pandemic, with proliferation of internet use and technology use, these cyber attacks become more refined and inventive, forcing the organizations to depend on the proficiency of the cybersecurity professionals.

As per CyberSeek report, around half million cybersecurity professionals are required to fulfill the gap. It is best time to become a cybersecurity professional because of this rising demand and small talent pool. There are some lucrative job opportunities available for those persons with relative technology focused skill. Even if someone does not have prior experience in cyber security domain, getting a job in this domain is possible. With the increase of frequency in cyber-attacks, almost all the organizations are recruiting to defend against these kinds of threats. There are various career paths available for the students who interested in making the career out of cyber security professional.

Like machine learning and data science, Cyber security career paths are also multidirectional as well as non-linear. Once someone enters the domain, his/her career can go in any direction. Along with that there are also feeder roles like risk analyst, software engineer, network administrator which can be used as a beginner level cyber security professional.

When anyone thinks of cybersecurity jobs, generally the first think comes into our mind is someone trying penetrate the networks or systems which is basically penetration testing or ethical hacking. But this notion is nothing but the tip of an iceberg. Cybersecurity is bigger than that. It contains various sub categories and specialization and all of these can be broadly categories in to two parts i.e., Infrastructure management and Security and Risk Management.

Infrastructure Security

Networking infrastructures are extremely important to multinational business organizations. Cybercriminals can readily access and exploit sensitive resources and information if they are not properly protected. Cybersecurity specialists must design, firewalls, virtual private networks, application security, and many more to mitigate security and data breaches.

Common job roles for the protection of infrastructure are given below:

  • Security Operations Center (SOC) analyst
  • Security infrastructure engineer
  • Cybersecurity engineer
  • Security architect
  • Cloud security engineer

Security and Risk Management

Security and risk management actually constitute ensuring that businesses follow security regulations and procedures, as well as undertaking risk assessment to determine security flaws in tangible infrastructure, business applications, and data. Penetration testing and compliance are useful roles in this niche. In fact, compliance has become so critical that some industries even have entire squad devoted entirely to data governance and privacy protection.

Common job roles for Security and Risk Management are given below:

  • Penetration tester
  • Data privacy and security analyst
  • Security compliance analyst
  • Information security analyst
  • Cyber Security Incident Response Analyst

Skill requirement for cybersecurity

Even though cybersecurity jobs may appear to be extremely specialized and computational-intensive, these skilled persons have the know-how of various different but interrelated domains. It is expected that these professionals have some specific skill sets in both hard skill sets which are scripting, system administration and networking and soft skill sets which are creative thinking and communication. Basically, one needs to constantly reinvent and learn upcoming technologies.

Technical Skills:

  • In terms of essential cybersecurity skills, Networking tops the list. If one wants to aspire to become a penetration tester or network security engineer, that person needs to fully grasp underlying mechanisms various networking protocols and principles.
  • Most network components and intrusion prevention systems run Linux as their operating system. Learning Linux helps to collect security data and perform security toughening.
  • System administration is indispensable for cyber security specialists. Can user, for example, dictate what happens after downloading malware on windows operating system or extract files from a pc without knowing the log in credentials?
  • To detect security loopholes in networks or security devices, it is necessary to have an outlook like a cybercriminal. White hat hackers try to safeguard data from both outside and inside threats by identifying vulnerabilities in systems that could be reduced. White hats are mainly utilized by the intended system’s owner and are handsomely compensated for their efforts. Their practice is not illegal since it is performed with the approval of the system owner.
  • To become a cybersecurity practitioner, you wouldn’t need to be an extremely skilled programmer, but you must handle situations with an algorithmic mindset. Scripting is a wonderful way to learn the underlying working principles of hardware and software.
  • Even though you wouldn’t want to become a programmer, it’s important to understand enough to read code.
  • To run malware analysis, cybersecurity professionals ought to be accustomed with all virtual machine platforms.

 Soft Skills

  • Communication: You will need to invest a considerable amount of time training end users on how to set up their machines or implement security measures.
  • New security hazards emerge all the time, so you must be able to continuously acquire new skills and techniques.
  • On a regular basis, cybersecurity entails finding solutions to issues. If you really do not like to indulge in solving problems, a profession in cybersecurity is probably not just for you.

 Top Cybersecurity Job roles: From beginner level to executive level

There are many high-paying, versatile full-time job vacancies in the industry. Due to the sheer world – wide scarcity of skilled talent pool, numerous recruiters are offering entry-level salaries ranging from Rs. ₹10L to ₹12L. Cybersecurity directors and chief information security officers (CISOs), for example, can obtain more than ₹90L per year.

  • Cybersecurity Analyst: Security Operations Centre (SOC) analyst concentrates on the front-line attack detection. Cybersecurity analysts work in dedicated security hubs and must be competent in a variety of areas such as log analysis, Wireshark, malware analysis, and programming. A SOC analyst’s primary responsibility is to monitor network data. This particular job role has the potential to be used as a fantastic launchpad for next level of the roles.
  • Penetration Tester: Penetration testers, also known as white hat hackers, are one of the most in-demand job positions in the cybersecurity industry. They are in charge of identifying and analyzing security flaws in organizational IT infrastructure along with that a penetration tester are asked to prepare a detailed report about their observations and procedures. Penetration testing is not a low-wage job rather it attracts one of the most handsome salaries in the industry.
  • Cybersecurity Engineer: Cybersecurity engineers, like software engineers, create technologies that protect computer architecture. Their commitment is to foresee network security loopholes, which necessitates the installation of firewalls, the use of encryption software, and the revamping of patches. A few years of experience and a strong command in various scripting languages are required to become a cybersecurity engineer.