Biomass based biofuel generation future in India

Out of some of the hottest trends that have been on the top lists for quite a while are choosing an entrepreneur as the primary occupation and doing an eco-friendly business.

The need of renewable energy is increasing in the world due to rapidly growing human population, urbanization and huge consumption of fossil fuels. Fossil fuel reserve is very limited, and the reserve is getting depleted day by day. The primary sources of energy that can be used as the alternative of fossil fuels are wind, water, solar and biomass-based energy.

Currently biomass as a feedstock for biofuel production is gaining importance. Biomass energy is supplying about 10-15% of total energy demand of the present world. Biomass feedstocks include organic material such as wood, wood-based energy crops, grass, lignucellulosic materials like wheat straw, rice straw, sugarcane baggase, corn, microalgae, agricultural residues, municipal wastes, forest product wastes, paper, cardboard and food waste. Biomass can be converted into biofuels by thermochemical and biochemical conversion. Based on the types of feedstocks or biomass the biofuels derived are divided into different groups i.e. 1st generation, 2nd generation, 3rd generation. 1st generation biofuels mainly extracted from the food crop-based feedstocks like wheat, barley, sugar and used for biodiesel and by fermentation to produce bioethanol. But first-generation biofuels face the “fuel vs food” debate and also the net energy gain is negative.  1st generation biofuels production systems also have some economic and environmental limitations. To overcome the drawbacks of 1st generation biofuels 2nd generation biofuels have been generated from the non-food crops-based feedstocks like organic wastes, lignocellulosic biomass etc. For biofuel production from these sources rigorous pretreatments are required to make the feedstocks suitable for biodiesel production. This is the major drawback of 2nd generation biofuel production. Then the attention of the world has been shifted towards 3rd generation biofuel production entails “algae-to biofuels”. Microalgae is easy to cultivate, has higher photosynthetic rate and growth rate than other plants and there is no food vs. feed dilemma present of using microalgae as feedstock for biofuel production. Presently the attention is also given towards fourth generation biofuel. The former concept of third generation of biofuel deals with the conversion process itself from the microalgae to biofuel. The fourth generation of biofuel concept deals with development of microalgal biotechnology via metabolic engineering to maximize biofuel yield. Fourth generation biofuel uses genetically modified (GM) algae to enhance biofuel production. In comparison with third generation in which the principal focus is in fact processing an algae biomass to produce biofuel, the main superior properties of the fourth are introducing modified photosynthetic microorganisms which in turn are the consequence of directed metabolic engineering, through which it is possible to continuously produce biofuel in various types of special bioreactors, such as photobioreactors.

Biomass has the highest potential for small scale business development and mass employment. Characterized by low-cost technologies and freely available raw materials, it is still one of the leading sources of primary energy for most countries. With better technology transfer and adaptation to local needs, biomass is not only environmentally benign, but also an economically sound choice. Bio-based energy can be expected to grow at a faster pace in the years to come. 

On the Biomass Energy sector, the India government committed to increasing the share of non-fossils fuel in total capacity to 40% by 2030. India produces about 450-500 million tonnes of biomass per year. Biomass provides 32% of all the primary energy use in the country at present. A total capacity of 10145 MW has been installed in the Biomass Power and Cogeneration Sector. The Installed Capacity of Biomass IPP is 1826 MW together with the Installed Capacity of Bagasse Cogeneration is 7547 MW and the Installed Capacity of Non-Bagasse Cogeneration is 772 MW. 

The eco-friendly business has lots of benefits, by going green with your business you’re promoting the Earth’s safety from potential environmental catastrophe, you support innovation and concomitantly producing green energy.

The Government of India has been constantly bound on increasing the use of clean energy sources. This does increase a better future and at the same time creates employment opportunities too. According to The Ministry of New and Renewable Energy (MNRE), India’s total installed capacity of renewable energy is 90 GW excluding hydropower. Also, it states that 27.41 GW will be added. Renewable Energy in India is a great asset to Energy Contribution, yet India still needs to work a lot in Renewable Energy Sectors.

A LEGAL STUDY OF THE DEVELOPMENT OF THE COPYRIGHT LAW IN INDIA

The history of copyright is the tale of how the law has adapted to technical advancements. There have been significant technological advancements since the Rome Convention in 1961 and the final amendment to the Berne Convention in 1971. The introduction of digital technology has repeatedly put a major strain on the copyright regime. The WIPO had established two committees of experts [Committee of Experts on a Possible Protocol to the Berne Convention in September 1991 and the Committee of Experts on a Possible Instrument for Protection of the Rights of Performers and Producers of Phonograms in September 1992] to examine the effects of new technologies on copyright and neighbouring rights. These Committees, after exhaustive discussions, in which India was an active participant, drafted basic proposals for three new treaties, that is-

  1. Treaty for Protection of Literary and Artistic Works;
  2. Treaty for Protection of the Rights of Performers and Producers of Phonograms; and
  3. Treaty on sui-generis protection for Databases.

The Conference adopted two treaties, the WIPO Copyright Treaty and the WIPO Performances and Phonograms Treaty. The database treaty was deferred for further study.

Being a WIPO member and a party to the WCT (World Copyright Treaty) and WPPT, India has repeatedly revised its domestic legislation to be in line with international copyright standards. The Copyright (Amendment) Act of 1994 and the Copyright (Amendment) Act of 2012 serve as excellent examples of the sufficient degrees of advancement in Indian copyright laws that have been repeatedly seen.

The Copyright (Amendment) Act, 2012’s recognition of the performers’ rights under Section 38-A and the recognition of the performers’ moral rights under Section 38-B speak volumes about Indian jurisprudential thought and intellectual development in relation to the related rights in the area of copyrights.

The 50-year protection period offered by Indian law to phonogram performers and producers is in line with worldwide norms; the duration of the protection is not just adequate but also satisfactory. It is also a nice development that the period of protection for broadcasting reproduction rights has been increased from 20 to 25 years in the case of broadcasting organizations.

Since the passage of the Copyright (Amendment) Act in 1994 and the Copyright (Amendment) Act in 2012, India’s Broadcasting Reproduction Rights and Performers’ Rights have advanced significantly. In addition to the general-statutory and other economic rights, India has made a significant advance by focusing on and incorporating the idea of moral rights—that is, rights related to paternity and integrity—into its legal framework.

India is quickly catching up to its necessary credit, as in some countries, performers, phonogram producers, and broadcasters of copyrighted works are protected by copyright alongside authors, while in others, they are protected by neighbouring or related rights because of their role in distributing copyrighted works to the public as consumer goods.

What India is still to realize

  1. New media and technology give right holders new avenues for the distribution and exploitation of their works, especially online works, potentially opening up more chances for direct licensing. Systematic management of digital rights are intended to allow a greater range of terms and conditions for the use of those works while better distributing and protecting the right holder’s investment [however, India awoke to this realization and adopted Sections 65-A and 65-B by virtue of the Copyright (Amendment) Act, 2012]. Increased market adoption of these systems is anticipated to expand consumer choice and availability of copyright works, such as digital software and entertainment products, and to permit price points that reflect the consumer’s actual use rather than an assumption that the consumer will use the product in a variety of formats. All of this must further copyrights as well as copyright-related rights, such as the rights to privacy and publicity.
  2. In the digital networked environment, creators and performers want assurances that their moral rights will be upheld, especially by third parties, and that their creations and performances won’t be unfairly influenced.
  3. Since the WIPO Internet Treaties negotiations began, audio visual performers have been calling for an upgrade to their legal status on a global scale. As a result, India should proactive begin pursuing this goal on a national level. India cannot afford to lose sight of the Rome Convention, which is now incorporated on a global level and seeks to update broadcasters’ rights in response to market changes and technical advancements.

Overall, India appears to be well-equipped to provide the allied-right-holders, such as performers, phonogram producers, and broadcasters, with the necessary protection. It is hoped that India will continue to advance and meet the challenges presented by the wave of digitalized, networked environments ‘head-on’.

THE NANO SCIENCE AND ITS CONTRIBUTION IN TREATING CANCER

Nanoscience involves the study of the control of matter on an atomic and molecular scale. This molecular level investigation is at a range usually below 100 nm. In simple terms, a nanometer is one billionth of a meter and the properties of materials at this atomic or subatomic level differ significantly from properties of the same materials at larger sizes. Although, the initial properties of nano materials studied were for its physical, mechanical, electrical, magnetic, chemical and biological applications, recently, attention has been geared towards its pharmaceutical application, especially in the area of drug delivery. According to the definition from NNI (National Nanotechnology Initiative), nanoparticles are structures of sizes ranging from 1 to 100 nm in at least one dimension. However, the prefix “nano” is commonly used for particles that are up to several hundred nanometers in size. Nanocarriers with optimized physicochemical and biological properties are taken up by cells more easily than larger molecules, so they can be successfully used as delivery tools for currently available bioactive compounds.

Cell-specific targeting can be achieved by attaching drugs to individually designed carriers. Recent developments in nanotechnology have shown that nanoparticles (structures smaller than 100 nm in at least one dimension) have a great potential as drug carriers. Due to their small sizes, the nanostructures exhibit unique physicochemical and biological properties (e.g., an enhanced reactive area as well as an ability to cross cell and tissue barriers) that make them a favorable material for biomedical applications. It is difficult to use large size materials in drug delivery because of their poor bioavailability, in vivo solubility, stability, intestinal absorption, sustained and targeted delivery, plasma fluctuations, therapeutic effectiveness etc. To overcome these challenges nanodrug delivery have been designed through the development and fabrication of nanostructures. Nanoparticles have the ability to penetrate tissues, and are easily taken up by cells, which allows efficient delivery of drugs to target site of action. Uptake of nanostructures has been reported to be 15–250 times greater than that of microparticles in the 1–10 um range. Nanoparticles can mimic or alter biological processes (e.g., infection, tissue engineering, de novo synthesis, etc. These devices include, but not limited to, functionalized carbon nanotubes, nanofibers, self-assembling polymeric nano constructs, nanomembranes, and nano-sized silicon chips for drug, protein, nucleic acid, or peptide delivery and release, and biosensors and laboratory diagnostics. Various polymers have been used in the design of drug delivery system as they can effectively deliver the drug to a target site and thus increase the therapeutic benefit, while minimizing side effects. The controlled release (CR) of pharmacologically active agents to the specific site of action at the therapeutically optimal rateand dose regimen has been a major goal in designing such devices. The drug is dissolved, entrapped, encapsulated or attached to a NP matrix and depending upon the method of preparation, nanoparticles, nanospheres or nanocapsules can be obtained. Nanocapsules are vesicular systems in which the drug is confined to a cavity surrounded by a unique polymer membrane, while nanospheres are matrix systems in which the drug is physically and uniformly dispersed. Biodegradable polymeric nanoparticles have attracted considerable attention as potential drug delivery devices in view of their applications in the controlled release of drugs, their ability to target particular organs/tissues, as carriers of DNA in gene therapy, and in their ability to deliver proteins, peptides and genes through a per oral route of administration. Recent advances in the application of nanotechnology in medicine, often referred to as nanomedicine, may revolutionize our approach to healthcare. Cancer nanotechnology is a relatively novel interdisciplinary area of comprehensive research that combines the basic sciences, like biology and chemistry, with engineering and medicine. Nanotechnology involves creating and utilizing the constructs of variable chemistry and architecture with dimensions at the nanoscale level comparable to those of biomolecules or biological vesicles in the human body. Operating with sub-molecular interactions, it offers the potential for unique and novel approaches with a broad spectrum of applications in cancer treatment including areas such as diagnostics, therapeutics, and prognostics.

Nanotechnology also opens pathways to developing new and efficient therapeutic approaches to cancer treatment that can overcome numerous barriers posed by the human body compared to conventional approaches. Improvement in chemotherapeutic delivery through enhanced solubility and prolonged retention time has been the focus of research in nanomedicine. The submicroscopic size and flexibility of nanoparticles offer the promise of selective tumor access. Formulated from a variety of substances, nanoparticles are configured to transport myriad substances in a controlled and targeted fashion to malignant cells while minimizing the damage to normal cells. They are designed and developed to take advantage of the morphology and characteristics of a malignant tumor, such as leaky tumor vasculature, specific cell surface antigen expression, and rapid proliferation.

Nanotechnology offers a revolutionary role in both diagnostics (imaging, immune-detection) and treatment (radiation therapy, chemotherapy, immunotherapy, thermotherapy, photodynamic therapy, and anti-angiogenesis). Moreover, nanoparticles may be designed to offer a multifunctional approach operating simultaneously as an effective and efficient anticancer drug as well as an imaging material to evaluate the efficacy of the drug for treatment follow-up. In recent years, nanomedicine has exhibited strong promise and progress in radically changing the approach to cancer detection and treatment.

Crisis Communication in the Post Digitalization Era

Crisis Communication at large has undergone a massive change in the last few decades especially after the introduction of new media and digital technologies. Earlier Corporate India used to have a Public Relations (PR) department which was mainly dedicated to maintaining the image of the organization. This was done using a series of steps including maintaining healthy relationships with people both at the internal level as well as with the audience or the customers at large. This department was also responsible for looking after the crisis communication in case of crisis situations. Now, in the post digitalization era, crisis may arise from Tweets, YouTube Videos or even a song, which has the power to tarnish the reputation of an organization.

There has been a notable instance in the year 2009 where a Canadian singer named Dave Carroll who had posted a song on YouTube based on “United Breaks Guitar” after his guitar was broken while flying through United Airlines. Initially the organization claimed that it was the negligence of the passenger and tried to shrug off the blame but through this song the Carroll made it a point to explain the entire incident. This musical video became popular in no time and gained massive attention of the audience which further influenced them from taking United Airlines flights for a while. The organization had to take many efforts to counter this narrative and thereby deal with this crisis situation to get back their customers, including offering a brand new Taylor guitar to Dave.

Now, this is not just one case rather with the growing popularity of online contents we get to see many such protests coming up almost every week. This is where the major challenge lies in dealing with a crisis scenario which has the potential of getting viral and thereby causing harm to the reputation of the organization.  Here, the key lies in targeting the same medium to build up a counter narrative and reach out to similar audience for managing the crisis situation.  For example, if a false narrative is spreading against an organization through twitter then the organization will have to take up initiatives to ensure that a counter narrative is spread from their end through twitter as well. So, it is not just important to target the crisis through communication but it is also important to use the same channel of communication though which the crisis has been spread.

Earlier organizations used to have draft Press Release ready for situations like any mishap during working hour or financial crisis which the organization may face in future. This used to help them to ensure that this Press Release can be readily spread if there are any such scenarios coming up in the near future. These days the definition of crisis has gone way beyond and all thanks to new media where anyone can literally post anything against an organization. Be it grievances from a customer or any counter narrative strategy used by competitive organization, crisis can come up in any form which was not even predicted before. In this case preparing a Press Release from beforehand will not be possible for any organization due to the vast diversity of crisis situations which may arise in the digital age. Hence, this is where using the same medium of communication can actually help any organization to target the same audience who has perhaps come across the information causing crisis in real time.

Strategic Communication management is playing a key role where dynamic crisis management is actually possible according to the book “How to Communicate Strategically in Corporate World”. The book states that communication has become an integral part of the strategies designed by an organization where a Chief Communications Officer often presides over the developments taking place in crisis management and other related strategic communication. Factors like personal touch and empathy are the key players in crisis communication where it is not just restricted to Press Release rather the organizations use strategies for communicating with people.

Sometimes, incidents like a flight crash can also come up as a crisis where communication becomes the major factor using which it can be managed. In one such incident during a flight crash of Air Asia, the organization had a strong hold of the situation and handled it so well that it had further lead to a positive publicity of the organization. This was possible due to the use of personal touch and empathy from the end of the organization during crisis communication. In this case the Tweets done by the spokes person Tony Fernandez who had profusely apologized for the plane crash and expressed that the organization takes over all the charges of the accident. This acted as a turning point where the audience could understand that the organization had genuine emotions towards the family members of the injured and deceased person. It became an eye opener for many other organizations that later came up with similar strategies to deal with crisis. Having empathy in communication helps to ensure that it is not the organization v/s the customers or the audience rather there is a blend between the organization and the audience. It further helps to persuade the audience ensuring that the organization is with them and not against them, making this one of the best practices in crisis communication.

Crisis communication has undergone a huge change over the course of time and now the use of only Press Release is not sufficient for crisis communication. The preference for medium of communication among the audience has changed, the lifestyle of the audience has changed and so do the nature of strategic communication but what has still remained same is the emotion. Hence, it is through personal touch and empathy that a crisis situation can be better handled and it should be reflected through crisis communication.

Green Hydrogen – A New Fuel of the Future

India is witnessing the multitude of benefits of renewable energy, including increased access to electricity, reduced local air pollution and carbon dioxide emissions, and lower energy imports. There are easy ways to boost renewable energy’s position in the grid as well as end-use industries like transportation and industrial. Nonetheless, there remain economic, technological, and feasibility challenges to fully electrifying all existing energy usage, limiting the extent to which renewable power may directly replace fossil fuels. Hydrogen is already widely employed, particularly as an industrial feedstock in the production of ammonia-based fertilizers. Most of the hydrogen is produced through methane reforming, which results in large carbon dioxide emissions. Carbon capture and storage (CCS) technologies can collect these emissions, but they are yet undeveloped in India.

Hydrogen produced using electrolysis powered by renewable energy—green hydrogen—and its use in fuel cells has a long history of promising a pathway to a global clean energy economy yet failing to deliver. Electrolysis, where water (H2O) is split into its component parts using electricity, is an alternate means of processing. While there is important research activity on electrolysis, photolysis and biogenic hydrogen production methods, these low-carbon emission technologies have not yet been implemented on a scale. This is partially due to today’s low-carbon hydrogen production costs that are higher than fossil fuel-based hydrogen or other fossil-fuel alternatives. However, it is possible that these costs could achieve equilibrium in the future with green hydrogen in desirable regions undercutting grey hydrogen. This is made more possible in India, where tariffs on renewable energy are already among the lowest in the world and natural gas supplies are low and expensive. The capital cost of electrolysers, along with energy costs, is another significant factor for reducing the cost of green hydrogen. With a ramp-up in implementation, these are likely to continue to decline, since most electrolysers are produced on a relatively small scale today.

Fresh water resources make up around 2.5 percent of the total amount of water on the planet. As shown in figure 1, fortunately, the accessible seawater resource is 39 times that of fresh water. Water use due to electrolysis should, however, not be viewed as gradually using up the water resource, because when green hydrogen is oxidized (by combustion or via a fuel cell) it yields the same amount of water as was originally electrolyzed. This may enter the atmosphere as water vapor or be condensed at the point of use and recovered as liquid water. Moreover, the production of green hydrogen simultaneously produces oxygen in the exact amount required to oxidize the hydrogen, this is an important characteristic, because atmospheric oxygen depletion is contributing to global warming. 

Figure 1: Annual water requirement of Green Hydrogen production relative to                 Earth’s water resources. [Source: https://www.sciencedirect.com/science/article/pii/S1464285921006581]
Figure 1: Annual water requirement of Green Hydrogen production relative to Earth’s water resources.
[Source: https://www.sciencedirect.com/science/article/pii/S1464285921006581]

Green hydrogen provides India with major opportunities to grow into a new field of renewable energy technology, building domestic manufacturing expertise to supply the Indian market as well as overseas. Electrolysers would be the principal technology of significance. There are currently no major Indian producers of this technology, with electrolysers being imported from Germany, Norwegian or Japanese companies currently in use in India.

Globally, the momentum for hydrogen and fuel cell technology is rising, with market forecasts ranging from $2.5 trillion to $11.7 trillion by 2050. India has the capacity to manufacture more than its domestic demand, large quantities of low-cost, low green hydrogen. Significant economic value could be produced by exploiting the country’s diverse range of hydrogen production feedstocks to produce hydrogen for export. To manufacture hydrogen for sale, India has many strategic advantages, as depicted in the figure 2 below:

Figure 2: Strategic Advantages of Green Hydrogen in India; Source: Self-evaluation
Figure 2: Strategic Advantages of Green Hydrogen in India; Source: Self-evaluation

Green hydrogen is therefore widely viewed as the ‘net zero’ fuel for our future energy system, with green oxygen replenishing the associated consumption of atmospheric oxygen. However, it should be noted that some of the hydrogen will be required as a feedstock (e.g., for ammonia and methanol production) rather than as a fuel, and some of the green oxygen will be applied to industrial processes and water oxygenation as opposed to being vented to the atmosphere. For instance, hydrogen and nitrogen will be carried into plants in the form of ammonium, and oxygen will be used by the steel industry. It is therefore important to identify synergies between the electrolysers’ need for water and the use of both green hydrogen and oxygen, because these could accelerate the deployment of electrolysis in the limited period, we have left to combat climate change.

As a result, green hydrogen and its derivatives are projected to play a crucial role in global decarbonization at scale due to their adaptability, which allows them to be used in a variety of applications and decarbonizes hard-to-abate sectors.

Pandemic to Prospect: New Avenues of Human Geography

Pandemic has heated hard the entire world as well as the academic field. But the social researchers found new ways of doing research within this fatal situation also. Covid 19 itself has become one of the key issues of research in the gamut of human geography. New research topics have come up with high research potential.

The world is constantly struggling with the demonic Covid 19. Academicians are also the worriers who are constantly dealing with the pandemic situation with utter positivity. The whole world has been locked within the four walls of the abode. But the mind of man can roam about here and there without having any restrictions of lockdown. The researchers are among those people, whose minds are freely moving in the alleys of new research scopes. The researchers from different domains have proved that the problems can be transformed into possibilities with structured and designed thinking.

Human geographers are always concerned about the minute tribulations of society. The intricacies of human nature and its reflections are the focal theme of research for human geographers. In the pandemic situation, the entire subjectivity of the social response and bonding has been changed in so many ways that human geographers got plenty of new research topics in their purview of knowledge. The research works based on Covid 19 are not only focusing on the epidemiological dimensions of it but human responses towards the pandemic are playing a role of pivotal research interest. The community-based studies on the pandemic situation, deriving simulation models based on human behavioural changes within this pandemic situation, and sustainable planning practices (especially in urban setups) are some highly focused issues in the domain of human geography after the pandemic has trickled.

Human geography has taken a new turn during this pandemic situation. Researchers have taken their ideas into various dimensions where the pandemic has created an abyssal impact. The major trends within this pandemic are quite challenging and interesting.

  • Works on migration and mobility are the leading aspect to which most of the research work in human geography is being devoted.
  • Policy research is one of the major aspects of research in the domain of human geography which took a new momentum. Ample of scopes have been created in terms of policy research starting from fiscal policy review to health policy recommendations.
  • Changes in human-nature interaction and their changing dynamics with the ecological system are the very dynamic aspect of research in growing demand.
  • A new form of web-based crime has grown in this pandemic situation. This sort of criminological study has huge scope and relevance for the betterment of society.
geography
Source: Dimension Database, 2022

The number of publications regarding pandemics in the domain of human geography has reached new heights after 2020. The rise is quitter sterling. Looking at the graph, the uprising trend of research in human geography after the pandemic is quite evident. Smithsonian Institution of the United States is leading in this field of research in the arena of human geography regarding the pandemic.

 Adamas University is one of the eminent places for high-end research in India. Department of Geography has taken up research issues related to pandemics. This department has organized one international conference entitled “Health and Environment: Frontiers Ahead”. This conference was devoted to the research works from various domains on the Pandemic situation across the world. Students from the department of geography started preparing research articles on the impact of Covid on various aspects of human society.

Reference:

Roger Frutos, Laurent Gavotte, Jordi Serra-Cobo, Tianmu Chen, Christian Devaux (2021), COVID-19 and emerging infectious diseases: The society is still unprepared for the next pandemic, Environmental Research, Volume 202

https://app.dimensions.ai/

Know the Game: Augment your career with Skills, Competencies, and Expertise in the niche segment of Health Geo-Informatics

The WHO has taken pledge to help countries and partners in making informed public health choices more quickly and to spread geospatial knowledge throughout the organization by connecting maps, apps, data, and people. Because of this change in emphasis, organizations all around the world are depending more and more on location intelligence to make smarter public health decisions. Human services and health geoinformatics occupations are in greater demand than ever.

John Snow’s ground-breaking work serves as an example of the effectiveness of mapping and geographic systems in addressing the cholera pandemic. The World Health Organization (WHO) has a long history of analyzing spatial distribution and risk factor patterns, identifying, preventing, and controlling diseases, and enhancing the effectiveness of public health initiatives. Making timely and trustworthy judgments that have the potential to save many lives is made possible by using GIS to connect spatial representation and public health planning. To name a few, 15 of the 17 health-related SDGs rely on GIS, for example, by monitoring air, water quality, and sanitation, neglected tropical diseases (malaria, guinea worm, snake bites), Polio, as well as health emergencies. Geoinformatics is defined as an academic discipline or career of working with geographical data for better understanding and interpretation of human interaction with the earth’s surface. It encompasses several technologies, approaches, processes, and methods to interpret and discourse spatial questions that necessitate spatial sense to address it. ESRI comments that “Hundreds of thousands of organizations in virtually every field are using GIS to make maps that communicate, perform analysis, share information, and solve complex problems around the world. This is changing the way the world works.”

Geoinformatics – Future Science
Figure 1. Geoinformatics – Future Science (Conceptualized and compiled by Dr. Anu Rai)

With its underlying capacity, Geoinformatics is emerging as a billion-dollar industry and offers lucrative opportunities to its professionals and trainers. In order to promote better public health planning and decision-making, geospatial technology, namely Health Geoinformatics, offers spatial representation of data. It is a niche segment of Geoinformatics and has significant uses in the fields of medicine and global health, but many nations currently limited or no access to these advantages in order to improve their health information systems. However, in post pandemic era, WHO and partner countries aggressively acknowledge and recommend the application of Geoinformatics in addressing public health issues.  WHO has taken pledge to help countries and partners in making informed public health choices more quickly and to spread geospatial knowledge throughout the organization by connecting maps, apps, data, and people. The WHO GIS Centre for Health wants to have a direct and long-lasting influence on the public by increasing its engagement with partners. Supporting geospatial data and analytics to enhance adherence and stewardship with WHO Standard Operating Procedures for maps and Web GIS applications are a few examples of the specific services offered by WHO. The purpose of such services is to improve national, regional, and analytical data as well as the health information system in order to boost the Member States’ and Partners’ effective use of GIS. Because of this change in emphasis, organizations all around the world are depending more and more on location intelligence to make smarter public health decisions. Human services and health geoinformatics occupations are in greater demand than ever. In order to forecast and evaluate industry trends utilizing a range of data and pro-actively build solutions and messaging to address important issues, drivers, and challenges, health GIS analysts or public health solution managers work closely with teams in varied domains of public health, human services, hospitals, insurance, managed health care systems, and environmental health. Despite corporate and public jobs and entrepreneurial opportunities, GIS analysts are highly engaged in investigating, understanding, and developing new businesses in areas underserved or not currently served with GIS applications in the health and human services space. This creates a new field of opportunity for work with product development as a customer advocate for the requirements of the health and human services sector.

In my academic career as an educator of Geography and Geoinformatics, I have often noticed curiosity among youngsters about career opportunities with the Health Geography and Geoinformatics, irrespective of the discipline and domain of undergraduate and postgraduate degrees they hold. I would answer that if you are interested to play with the nuts and bolts of spatial health science, the Post Graduate Program on Geography and Geoinformatics is a good option for you. You may select diverse fields of Health Geoinformatics depending on the expertise of the domain varying from map making to app development. You can also opt for jobs in Public Health firms that include diverse skill-based jobs in the field of marketing development and testing and even entrepreneurship. Research-based course experience also opens huge job prospects in development and planning commission, scientists in HRD, and other research institutions in India and abroad. Application of neo-geographical tools, statistical algorithms, machine learning, multi-criterion decision-making techniques, computer-programming, SQLs, text-analytics and learning and practices of GIS and statistical packages that enable GI Scientists to solve the multifaceted real-life problem has opened extensive career opportunities to practitioners of geoinformatics in the field of public health data science as well. Health data scientists, data analysts, big data analysts, spatial data analysts, etc. are some of the lucrative jobs paying high salary packages to deserving candidates. So, if spatial logic of health attracts you, Health Geoinformatics is the best option to augment your career with skills, competencies, and expertise.

For such more examples you may also visit the sites of:

How to Make Pharmacy Graduate Resume

Pharmacists are at a pinnacle in the ability to manage, cure and prevent disease. Today, the pharmacist plays an essential role as part of the healthcare management team along with doctors. The post covid episode of the market produce a huge requirement of fresher students in healthcare management system especially in sterile manufacturing like vaccine or other injectables like monoclonal antibodies. India practically ensures a bright future for the fresher students who are entering the profession. Sooner the fourth-year students will graduate from Pharmacy school. There is only one step left between the students and the job of their dreams. And there should not be any mistake for getting ready for the interview. Foremost part to entry through the gateway to get those positions in industry required one small document the Resume. Listed below are some basic steps involved in writing of a standard quality resume:

  1. The resume should represent about the candidate but it should do so in a certain format and cover specific areas sometimes specified by the school also.
  2. The information in resume should be clear, succinct and mistake-free. grammatical errors that a fresh pair of eyes might catch that’s why review by other persons is needed. using white or off-white paper for your resume is essential.
  3. Reachable contact numbers and email id should be provided along with the full name.
  4. Any kind of unethical practice like exaggerating or claiming things like research activities or scholarships that you are not involved with can put candidates blacklisted to the company, that’s why fabrication of the resume unethically is not good and unwise.
  5. Try to incorporate the research activities you have done in your b. schooling in your resume. If you have published any review or research article in peer review journal may be with your teachers or you have received any prize please mention. There is nothing wrong with describing these or any awards you have received.
  6. get register your name in students’ pharmaceutical associations or may be in IPA, IPGA etc. this kind of membership also increases the friend circle of the newcomer.
  7. Place the most important information about yourself first, but make sure your honours and awards are near the top of the list as well. Describe anything different about your strong point like leadership capability that will allow you to get interested to the recruiter.
  8. If you’re appearing for an interview where experience is mandatory for a particular field just make caps or bold the areas related to that.
  9. In the cover letter the reason for applying the job is required to mention and which should be brief and to the point. Sometimes the recruiter asked to mention the exact position applied like executive or sr. executive so that also should be written.
  10. Though the length of your resume varies depending on an individual’s experiences, but generally it should be within one page or two maxima. All the details you are providing should be pointwise and in a brief manner. The skill and strength should be mentioned in case of fresher candidate and using the powerful words like Detail-orientated, Communication, Time-management, Empathy, Teamwork 
  11. References can be provided along with the addresses and mobile numbers but better to give the contacts of some senior faculty or managers you know.
  12. some other points should not get missed out like experience in MS word, excel, and database management system etc. and reverse chronological order for writing.
  13. Lastly the status of the pharmacy license of PCI should also be mentioned.

Career Prospects in Cyber security

Multinational companies are spending fortunes to protect and secure their systems, sensitive data, networks, and privacies from cybercriminals. After the pandemic, with proliferation of internet use and technology use, these cyber attacks become more refined and inventive, forcing the organizations to depend on the proficiency of the cybersecurity professionals.

As per CyberSeek report, around half million cybersecurity professionals are required to fulfill the gap. It is best time to become a cybersecurity professional because of this rising demand and small talent pool. There are some lucrative job opportunities available for those persons with relative technology focused skill. Even if someone does not have prior experience in cyber security domain, getting a job in this domain is possible. With the increase of frequency in cyber-attacks, almost all the organizations are recruiting to defend against these kinds of threats. There are various career paths available for the students who interested in making the career out of cyber security professional.

Like machine learning and data science, Cyber security career paths are also multidirectional as well as non-linear. Once someone enters the domain, his/her career can go in any direction. Along with that there are also feeder roles like risk analyst, software engineer, network administrator which can be used as a beginner level cyber security professional.

When anyone thinks of cybersecurity jobs, generally the first think comes into our mind is someone trying penetrate the networks or systems which is basically penetration testing or ethical hacking. But this notion is nothing but the tip of an iceberg. Cybersecurity is bigger than that. It contains various sub categories and specialization and all of these can be broadly categories in to two parts i.e., Infrastructure management and Security and Risk Management.

Infrastructure Security

Networking infrastructures are extremely important to multinational business organizations. Cybercriminals can readily access and exploit sensitive resources and information if they are not properly protected. Cybersecurity specialists must design, firewalls, virtual private networks, application security, and many more to mitigate security and data breaches.

Common job roles for the protection of infrastructure are given below:

  • Security Operations Center (SOC) analyst
  • Security infrastructure engineer
  • Cybersecurity engineer
  • Security architect
  • Cloud security engineer

Security and Risk Management

Security and risk management actually constitute ensuring that businesses follow security regulations and procedures, as well as undertaking risk assessment to determine security flaws in tangible infrastructure, business applications, and data. Penetration testing and compliance are useful roles in this niche. In fact, compliance has become so critical that some industries even have entire squad devoted entirely to data governance and privacy protection.

Common job roles for Security and Risk Management are given below:

  • Penetration tester
  • Data privacy and security analyst
  • Security compliance analyst
  • Information security analyst
  • Cyber Security Incident Response Analyst

Skill requirement for cybersecurity

Even though cybersecurity jobs may appear to be extremely specialized and computational-intensive, these skilled persons have the know-how of various different but interrelated domains. It is expected that these professionals have some specific skill sets in both hard skill sets which are scripting, system administration and networking and soft skill sets which are creative thinking and communication. Basically, one needs to constantly reinvent and learn upcoming technologies.

Technical Skills:

  • In terms of essential cybersecurity skills, Networking tops the list. If one wants to aspire to become a penetration tester or network security engineer, that person needs to fully grasp underlying mechanisms various networking protocols and principles.
  • Most network components and intrusion prevention systems run Linux as their operating system. Learning Linux helps to collect security data and perform security toughening.
  • System administration is indispensable for cyber security specialists. Can user, for example, dictate what happens after downloading malware on windows operating system or extract files from a pc without knowing the log in credentials?
  • To detect security loopholes in networks or security devices, it is necessary to have an outlook like a cybercriminal. White hat hackers try to safeguard data from both outside and inside threats by identifying vulnerabilities in systems that could be reduced. White hats are mainly utilized by the intended system’s owner and are handsomely compensated for their efforts. Their practice is not illegal since it is performed with the approval of the system owner.
  • To become a cybersecurity practitioner, you wouldn’t need to be an extremely skilled programmer, but you must handle situations with an algorithmic mindset. Scripting is a wonderful way to learn the underlying working principles of hardware and software.
  • Even though you wouldn’t want to become a programmer, it’s important to understand enough to read code.
  • To run malware analysis, cybersecurity professionals ought to be accustomed with all virtual machine platforms.

 Soft Skills

  • Communication: You will need to invest a considerable amount of time training end users on how to set up their machines or implement security measures.
  • New security hazards emerge all the time, so you must be able to continuously acquire new skills and techniques.
  • On a regular basis, cybersecurity entails finding solutions to issues. If you really do not like to indulge in solving problems, a profession in cybersecurity is probably not just for you.

 Top Cybersecurity Job roles: From beginner level to executive level

There are many high-paying, versatile full-time job vacancies in the industry. Due to the sheer world – wide scarcity of skilled talent pool, numerous recruiters are offering entry-level salaries ranging from Rs. ₹10L to ₹12L. Cybersecurity directors and chief information security officers (CISOs), for example, can obtain more than ₹90L per year.

  • Cybersecurity Analyst: Security Operations Centre (SOC) analyst concentrates on the front-line attack detection. Cybersecurity analysts work in dedicated security hubs and must be competent in a variety of areas such as log analysis, Wireshark, malware analysis, and programming. A SOC analyst’s primary responsibility is to monitor network data. This particular job role has the potential to be used as a fantastic launchpad for next level of the roles.
  • Penetration Tester: Penetration testers, also known as white hat hackers, are one of the most in-demand job positions in the cybersecurity industry. They are in charge of identifying and analyzing security flaws in organizational IT infrastructure along with that a penetration tester are asked to prepare a detailed report about their observations and procedures. Penetration testing is not a low-wage job rather it attracts one of the most handsome salaries in the industry.
  • Cybersecurity Engineer: Cybersecurity engineers, like software engineers, create technologies that protect computer architecture. Their commitment is to foresee network security loopholes, which necessitates the installation of firewalls, the use of encryption software, and the revamping of patches. A few years of experience and a strong command in various scripting languages are required to become a cybersecurity engineer.      

New Era of Construction Engineering and Management

During the recent time of pandemic when the world is paused for almost all regular activities so is the situation for the academics and industries. The time demands new era construction engineering mangers to develop and run a system where employees can be engaged to their respective fields with all safety measures to maintain the pace of the project.

Here, a brief discussion is done on the importance and opportunities of Construction Engineering and Management for the next generation engineering graduates.

History:

It all started at the time when people used to live in the caves of jungles or forests. Then one or few of them observed nature and got an idea to build a house of leaves. That incident may be called as the first example of construction in the human history. As the time went past, new techniques were developed and the infrastructure of the society also improved to upgrade the living standard of the citizens.

In fact even few decades ago, if anyone is asked to call an engineer, he/she at first used to the think of a civil engineer or more specifically a construction engineer. Construction Engineering and Management is basically a part of Civil Engineering which requires technical and scientific knowledge with critical thinking. Sometimes it requires design and execution of new techniques to solve the critical problems and help to improve safety and efficiency in production.

Roles and Responsibility:

A construction engineer must be aware of rules and regulations, facts of different codes of practices, should be up to date with the latest safety measurement techniques. A good construction project manager increases the productivity of the organization by completing the project efficiently with in the time allocated. Construction Engineering and Management is a bridge between construction and execution of all the activities of the project and management of all the resources of it. An engineering manager may need to investigate the job site, check environmental regulations and other laws of the local administration and sometimes may work with the labors. A construction manager prepares report on the work progress, availability of the resources, and figure out appropriate solutions to critical problems. The position need to deals with the wide range of people like contractors, suppliers, environmental and govt. agencies. Apart from on-site jobs, a construction manager may take help of software to analyze and find out important facts of the project.

Generally the role of a construction project manager can be classified into the following three phases:

  • Pre-construction Phase: This phase consist of project planning and organizing. Before starting the execution process plan, schedule and budget allocation of materials, human, equipment should be done.
  • Construction Phase: During construction the optimum of all the resources will be used. So it requires close monitoring of construction manager. The engineering knowledge and skill of the construction manager is helpful during this phase of construction management. Constant communication is built among all the levels of employees in order to run this process smoothly.
  • Post Construction Phase: The construction engineering manager is the technical person who will prepare the project progress report and clarify it to the owners as well as to the other govt. institutions.

Scope and Opportunities:

The engineers placed in the construction projects can only understand the criticality of the challenges and determine the actual requirement of human resources as well as material resources. Based on the experience and/or knowledge, only construction engineering managers can solve various challenges in construction sites. In current situation where the pandemic hit society is struggling to run its regular life, the new age construction engineers can be a silver lining to all. They can propose and encourage government and other organizations to continue development woks and can create modern day infrastructure needs by using cutting edge technologies invented till date. The use of the modern techniques will serve the society in two way. One is by using modern equipment, projects can be completed quickly than usual time and will save huge amount of labor cost. On the other hand, it will create a new set of employment sector where new technicians will be required to operate modern equipment.

To avail all these pride and opportunities, one must have a valid degree or experience in civil/construction engineering. For the information of all aspirants, it must be mentioned that there are very few institutions who offer construction engineering & management in west Bengal. Adamas University is one of the prime university among them in the eastern zone of India with world class facilities where students from abroad comes to build their career. Here you will find a set of talented experienced faculties and all laboratory supports to pursue your dream into reality.