THE NANO SCIENCE AND ITS CONTRIBUTION IN TREATING CANCER

Nanoscience involves the study of the control of matter on an atomic and molecular scale. This molecular level investigation is at a range usually below 100 nm. In simple terms, a nanometer is one billionth of a meter and the properties of materials at this atomic or subatomic level differ significantly from properties of the same materials at larger sizes. Although, the initial properties of nano materials studied were for its physical, mechanical, electrical, magnetic, chemical and biological applications, recently, attention has been geared towards its pharmaceutical application, especially in the area of drug delivery. According to the definition from NNI (National Nanotechnology Initiative), nanoparticles are structures of sizes ranging from 1 to 100 nm in at least one dimension. However, the prefix “nano” is commonly used for particles that are up to several hundred nanometers in size. Nanocarriers with optimized physicochemical and biological properties are taken up by cells more easily than larger molecules, so they can be successfully used as delivery tools for currently available bioactive compounds.

Cell-specific targeting can be achieved by attaching drugs to individually designed carriers. Recent developments in nanotechnology have shown that nanoparticles (structures smaller than 100 nm in at least one dimension) have a great potential as drug carriers. Due to their small sizes, the nanostructures exhibit unique physicochemical and biological properties (e.g., an enhanced reactive area as well as an ability to cross cell and tissue barriers) that make them a favorable material for biomedical applications. It is difficult to use large size materials in drug delivery because of their poor bioavailability, in vivo solubility, stability, intestinal absorption, sustained and targeted delivery, plasma fluctuations, therapeutic effectiveness etc. To overcome these challenges nanodrug delivery have been designed through the development and fabrication of nanostructures. Nanoparticles have the ability to penetrate tissues, and are easily taken up by cells, which allows efficient delivery of drugs to target site of action. Uptake of nanostructures has been reported to be 15–250 times greater than that of microparticles in the 1–10 um range. Nanoparticles can mimic or alter biological processes (e.g., infection, tissue engineering, de novo synthesis, etc. These devices include, but not limited to, functionalized carbon nanotubes, nanofibers, self-assembling polymeric nano constructs, nanomembranes, and nano-sized silicon chips for drug, protein, nucleic acid, or peptide delivery and release, and biosensors and laboratory diagnostics. Various polymers have been used in the design of drug delivery system as they can effectively deliver the drug to a target site and thus increase the therapeutic benefit, while minimizing side effects. The controlled release (CR) of pharmacologically active agents to the specific site of action at the therapeutically optimal rateand dose regimen has been a major goal in designing such devices. The drug is dissolved, entrapped, encapsulated or attached to a NP matrix and depending upon the method of preparation, nanoparticles, nanospheres or nanocapsules can be obtained. Nanocapsules are vesicular systems in which the drug is confined to a cavity surrounded by a unique polymer membrane, while nanospheres are matrix systems in which the drug is physically and uniformly dispersed. Biodegradable polymeric nanoparticles have attracted considerable attention as potential drug delivery devices in view of their applications in the controlled release of drugs, their ability to target particular organs/tissues, as carriers of DNA in gene therapy, and in their ability to deliver proteins, peptides and genes through a per oral route of administration. Recent advances in the application of nanotechnology in medicine, often referred to as nanomedicine, may revolutionize our approach to healthcare. Cancer nanotechnology is a relatively novel interdisciplinary area of comprehensive research that combines the basic sciences, like biology and chemistry, with engineering and medicine. Nanotechnology involves creating and utilizing the constructs of variable chemistry and architecture with dimensions at the nanoscale level comparable to those of biomolecules or biological vesicles in the human body. Operating with sub-molecular interactions, it offers the potential for unique and novel approaches with a broad spectrum of applications in cancer treatment including areas such as diagnostics, therapeutics, and prognostics.

Nanotechnology also opens pathways to developing new and efficient therapeutic approaches to cancer treatment that can overcome numerous barriers posed by the human body compared to conventional approaches. Improvement in chemotherapeutic delivery through enhanced solubility and prolonged retention time has been the focus of research in nanomedicine. The submicroscopic size and flexibility of nanoparticles offer the promise of selective tumor access. Formulated from a variety of substances, nanoparticles are configured to transport myriad substances in a controlled and targeted fashion to malignant cells while minimizing the damage to normal cells. They are designed and developed to take advantage of the morphology and characteristics of a malignant tumor, such as leaky tumor vasculature, specific cell surface antigen expression, and rapid proliferation.

Nanotechnology offers a revolutionary role in both diagnostics (imaging, immune-detection) and treatment (radiation therapy, chemotherapy, immunotherapy, thermotherapy, photodynamic therapy, and anti-angiogenesis). Moreover, nanoparticles may be designed to offer a multifunctional approach operating simultaneously as an effective and efficient anticancer drug as well as an imaging material to evaluate the efficacy of the drug for treatment follow-up. In recent years, nanomedicine has exhibited strong promise and progress in radically changing the approach to cancer detection and treatment.

Crisis Communication in the Post Digitalization Era

Crisis Communication at large has undergone a massive change in the last few decades especially after the introduction of new media and digital technologies. Earlier Corporate India used to have a Public Relations (PR) department which was mainly dedicated to maintaining the image of the organization. This was done using a series of steps including maintaining healthy relationships with people both at the internal level as well as with the audience or the customers at large. This department was also responsible for looking after the crisis communication in case of crisis situations. Now, in the post digitalization era, crisis may arise from Tweets, YouTube Videos or even a song, which has the power to tarnish the reputation of an organization.

There has been a notable instance in the year 2009 where a Canadian singer named Dave Carroll who had posted a song on YouTube based on “United Breaks Guitar” after his guitar was broken while flying through United Airlines. Initially the organization claimed that it was the negligence of the passenger and tried to shrug off the blame but through this song the Carroll made it a point to explain the entire incident. This musical video became popular in no time and gained massive attention of the audience which further influenced them from taking United Airlines flights for a while. The organization had to take many efforts to counter this narrative and thereby deal with this crisis situation to get back their customers, including offering a brand new Taylor guitar to Dave.

Now, this is not just one case rather with the growing popularity of online contents we get to see many such protests coming up almost every week. This is where the major challenge lies in dealing with a crisis scenario which has the potential of getting viral and thereby causing harm to the reputation of the organization.  Here, the key lies in targeting the same medium to build up a counter narrative and reach out to similar audience for managing the crisis situation.  For example, if a false narrative is spreading against an organization through twitter then the organization will have to take up initiatives to ensure that a counter narrative is spread from their end through twitter as well. So, it is not just important to target the crisis through communication but it is also important to use the same channel of communication though which the crisis has been spread.

Earlier organizations used to have draft Press Release ready for situations like any mishap during working hour or financial crisis which the organization may face in future. This used to help them to ensure that this Press Release can be readily spread if there are any such scenarios coming up in the near future. These days the definition of crisis has gone way beyond and all thanks to new media where anyone can literally post anything against an organization. Be it grievances from a customer or any counter narrative strategy used by competitive organization, crisis can come up in any form which was not even predicted before. In this case preparing a Press Release from beforehand will not be possible for any organization due to the vast diversity of crisis situations which may arise in the digital age. Hence, this is where using the same medium of communication can actually help any organization to target the same audience who has perhaps come across the information causing crisis in real time.

Strategic Communication management is playing a key role where dynamic crisis management is actually possible according to the book “How to Communicate Strategically in Corporate World”. The book states that communication has become an integral part of the strategies designed by an organization where a Chief Communications Officer often presides over the developments taking place in crisis management and other related strategic communication. Factors like personal touch and empathy are the key players in crisis communication where it is not just restricted to Press Release rather the organizations use strategies for communicating with people.

Sometimes, incidents like a flight crash can also come up as a crisis where communication becomes the major factor using which it can be managed. In one such incident during a flight crash of Air Asia, the organization had a strong hold of the situation and handled it so well that it had further lead to a positive publicity of the organization. This was possible due to the use of personal touch and empathy from the end of the organization during crisis communication. In this case the Tweets done by the spokes person Tony Fernandez who had profusely apologized for the plane crash and expressed that the organization takes over all the charges of the accident. This acted as a turning point where the audience could understand that the organization had genuine emotions towards the family members of the injured and deceased person. It became an eye opener for many other organizations that later came up with similar strategies to deal with crisis. Having empathy in communication helps to ensure that it is not the organization v/s the customers or the audience rather there is a blend between the organization and the audience. It further helps to persuade the audience ensuring that the organization is with them and not against them, making this one of the best practices in crisis communication.

Crisis communication has undergone a huge change over the course of time and now the use of only Press Release is not sufficient for crisis communication. The preference for medium of communication among the audience has changed, the lifestyle of the audience has changed and so do the nature of strategic communication but what has still remained same is the emotion. Hence, it is through personal touch and empathy that a crisis situation can be better handled and it should be reflected through crisis communication.

Prof (Dr) Mahul Brahma (PhD, DLitt) is a Professor and Dean of School of Media and Communications, Adamas University and a Fellow of School of Art, Film and Media, Bath Spa University, UK. He is an author and TEDx speaker. His latest book The Mythic Value of Luxury has won Sahityakosh Samman recently. His first short film was screened at Cannes Film Festival.

Nanofibers: A potent drug delivery system

Successful delivery of drug occurs only if the proper drug carrier has been chosen. Nanofibers act as a good drug delivery system and they are biodegradable, biocompatible. They can be prepared either by using a single polymer solution or a blend of different polymeric solutions. Due to the large surface area and high aspect ratio nanofibers are widely used for different biomedical purposes. Nanofibers act as a suitable drug delivery system for low solubility and low permeability drugs. Nanofibers act as a controlled release drug delivery system by delivering drugs over a fixed period with minimum side effects. Electrospinning is a voltage-dependent process in which nanofibers are prepared either from a single polymeric solution or from a blend of different polymeric solutions. The basic setup for this process is a syringe with a needle containing a polymeric solution which acts as a reservoir, a pump, a high voltage power source and a collector. When electrostatic repulsion becomes higher than the surface tension of the loaded polymer solution then it results in the formation of Taylor Cone, which elongates and is ultimately deposited on the collector as nanofibers mat.

Nanofibers are small lightweight fibers whose diameter is in the nanometer range. Nanofibers have some excellent properties such as a high surface area to volume ratio, small, better porosity. Nanofibers find their use in the chemical, biotechnological, pharmaceutical industries. Due to several functions of nanofibers, they have achieved immense interest in the sectors of power storage as well as power production, pharmaceutical field, fabrics, numerous biological devices, treatment of water as well as in maintaining ecological balance. The extremely conventional technique to form the nanofiber mat is done by electrospinning. Electrospinning is a voltage-dependent process where nanofibers are made from a polymer solution or a mixture of polymer solutions when placed in an electric field which results in the elongation of the solution into a jet-like structure and ultimately forms Taylor Cone. When electrostatic repulsion becomes higher than the surface tension of the liquid then a conical-shaped structure is formed at the tip of the needle which is called the Taylor cone. Nanofibers can be prepared using polymers or a mixture of various polymeric solutions. PVA is not a natural polymer but it is miscible with water. PVA is colorless, odorless, non-toxic. PVA is biodegradable and biocompatible. PVA is utilized for various purposes which comprise the making of membranes, films, also in biomedical fields, as a carrier for the delivery of drugs as well as polymer composites. PVA also finds its use in paper cutting, coating of fabrics, gums, preparation of fibers. HPMC falls into the class of cellulose ethers. HPMC is a hydrophilic, recyclable and biocompatible type of polymer which have numerous functions in cases of delivery of drug, colors, cosmetics, gums, coating agent, in agricultural fields as well as in textile industries. Chitosan which is a linear polysaccharide is made up of linking between D-glucosamine and N-acetyl-D-glucosamine. Chitosan is made up by treating chitin shells with alkaline substances. Chitosan provides many functions which in turn makes it appropriate for different uses like in the pharmaceutical field, biomedical purposes, as a carrier for delivery of drugs, foodstuffs, in treatment of water.

Nanotechnology has therefore emerged as an important field in medicine that has significant therapeutic benefits. There is also a need to control the delivery of the drug with respect to the site of action as well as dose to lower adverse effects. There are a large number of nano-drug delivery systems (NDDS) that act as potential drug carriers to treat cancer, autoimmune disorders, cardiovascular defects. Nanocarriers or nano vehicles act as effective drug delivery systems providing many advantages. Nanofibers possess a greater surface area to volume ratio. Therefore, nanofibers can be used where a large surface area is required. They can be formed using a wide variety of polymers. Polymeric nanofibers can be used in bone tissue engineering, cartilage tissue engineering, ligament, tendon tissue engineering. Nanofibers can also be used in lithium-air batteries, transistors, diodes, capacitors, composite for aerospace structures, optical sensors, air filtration. Nanofibers are also good carriers for effective gene delivery and expression.

Nanofibers are very small which provides them unique physical and chemical properties and allows them to be used in very small places. Nanofibers have a huge surface area compared to their volume. They possess the adaptability to change themselves to a broad variety of shapes as well as sizes respectively. Nanofibers are small, lightweight fibers whose diameter is in the nanometer range. Nanofibers are prepared by using a polymer or blend of different polymers. The diameter of the nanofibers relies upon the category, nature of the polymer used in the process of formation of nanofibers. Different methods which include drawing, electrospinning, self-assembly, template synthesis are used to prepare nanofibers while electrospinning is the most commonly used method. Nanofibers have attained extreme interest due to their utilization in various biomedical purposes over the last few decades due to their distinctive functional properties like greater surface area and high aspect ratio, which ultimately have a crucial role in cellular and molecular activities, maintaining their structure similar to the local cellular microenvironment. Instead of their numerous advantages, few biomedical purposes require the use of nanofiber composites due to their perfect, superior structural and tunable functional properties compared to single-phase nanofibers. Nanofiber composites are a relatively modern, distinctive, special, versatile group of nanomaterials. The nanofiber composite approach has remarkably increased the cell attachment and cellular role with respect to the single-phase nanofiber approach. Nanofibers have attained extreme interest due to their extensive usage in the storage and production of energy, chemical and biological detectors, pharmaceutical industries as well as textile industries, purification of water, and preventing environmental damage. Even though much work has been done for the fabrication of transition metal oxide nanofibers, but still their incorporation at definite positions into nano-matric requires nanofibers to be synthesized with fine reproducibility, suitable-controlled orientation, tunable size, and great aspect ratio. The big-scale production of nanofibers with such features is still a challenging work as the mostly used electrospinning methods have some disadvantages which are namely less yield, great operating voltage, and problems in acquiring in situ deposition of nanofibers on various substrates. The formation of nanofibers can be enlarged using the electrospinning setup with numerous needles or by utilizing needleless electrospinning. Nanofibers are fibers of the nanometer scale. Nowadays there are a large number of techniques for the generation of nanofibers which include self-assembly, electrospinning, template synthesis, and phase separation methods. Besides, nanofibers can be prepared using different types of polymers which include keratin, collagen, silk fibroin, cellulose, gelatin, polyvinyl alcohol (PVA), hydroxypropyl methylcellulose (HPMC), polylactic acid (PLA), polylactic-co-glycolic acid (PLGA), polyethylene-co-vinyl acetate (PEVA) and polysaccharides like alginate and chitosan respectively. Nanofibers are regarded as essential, significant by many researchers because of the benefits they offer, such as being lightweight and having less diameter, possessing greater surface-to-volume ratios, manageable pore structures.

What is Biochemistry- more of Biology or more of Chemistry

After your 10+2 examination, it is the time to choose your carrier path and you need to decide on a subject for your under graduation study. You need to choose a subject wisely, which you can fall in love with, has a good job perspective, a versatile curriculum and you can have a carrier that is fulfilling to your intellectual and curious mind and most importantly serves society in a way that no other profession can substitute it. Here I am going to suggest to you the subject Biochemistry.

Now before you sought ‘Eureka’ and jump into this Biochemical soup; let us understand what Biochemistry really is and what the carrier opportunities are for a student studying Biochemistry. First, let us understand if Biochemistry is more of chemistry or Biology or if both of them in equivalent. The subject Chemistry mostly deals with atoms and molecules, which are the constituents of our whole universe. Chemistry describes the different properties of every individual element in the periodic table, also describes how the atomic-level structure of those elements is responsible for these special characteristics. By doing so, it opens up new possibilities to design new materials and molecules with novel functions that have never existed in our universe or some improved version of the existing materials. Therefore, chemistry discovers the basic theories or rules of chemical science to invent new materials and molecules. These rules are followed by every element and chemical reaction in nature including all the living entities. The subject Biochemistry uses those rules to explain all the reactions and phenomena of the biological world.  Consider us, Humans, the way our eyes see light follows the basic rules of photochemistry, the way we breadth it follows basic chemical rules of diffusion and osmosis. All the metabolic reaction that generates energy, produces biomolecules, polymerization of DNA, RNA and proteins follow basic rules of chemical reactions. So, you may ask, is there anything special in Biochemistry or it is just that old chemistry in a new wrapper? Biochemistry deals with the structure and functions of bio-macromolecules, which are more complex than simple elementary chemistry. Biological reactions are remarkably accurate, specific (Stereospecific/regiospecific), and high yield. Moreover, all the reactions occur at 37 degrees centigrade with no scope of heating or cooling. Therefore, although the biochemical reactions are following basic elementary chemical principles, it uses sophisticated biological machinery (like ribosome to synthesize proteins, motor proteins for cellular transport and different enzymes for biochemical synthesis, etc) to make the reactions more efficient. The subject Biochemistry deals with these machinery to explain how it works and how malfunction of it can cause a deadly disease. The scope of biochemistry extends even further to identify or invent molecules that have medicinal properties to cure the disease.  So, therefore, the subject biochemistry has the equivalent amount of Biology and Chemistry and also includes small parts of Physics too. However, the curriculum for B. Sc Biochemistry includes associated subjects like Microbiology, Cell Biology, Biotechnology, Molecular biology, Recombinant DNA technology, Immunology, Human Physiology, Genetics, etc. So, as a whole, the course Biochemistry has little more Biology than Chemistry.

You might be wondering after you finished your B. Sc in Biochemistry, what are the jobs that are available to you.  Now a day, Indian bio-industries are growing like never before and everyone knows these names like Serum Institute of India, Bharat Biotech, and Biocon. These big bio-industries which produces vaccine, enzymes, antibody-based immunotherapy for cancer (Biologics), etc recruits Biochemistry undergraduates. All medicine companies like Dr. reddy’s laboratories, Cipla, Aurobindo Pharma, Lupin limited, etc recruit Biochemistry undergraduates as laboratory associates as well as medical representatives. Different food processing, breweries and bioprocess companies recruit Biochemistry undergraduates as quality control experts. Other than industry, you can appear for all those government jobs that require a bachelor’s degree.

However, the most interesting and intense carrier opportunity a Biochemistry undergraduate can have is pursuing higher study and research. There are different competitive examinations like National eligibility test (NET) and Graduate aptitude test for engineers (GATE) after you complete your M. Sc in Biochemistry to join a research lab as a PhD student in India. Alternatively, you can appear in Graduate Record Examination (GRE)/ Test of English as a Foreign Language (TOEFL) and choose to go abroad (USA, Germany, Canada, UK, Singapore, etc) to pursue your PhD. The focus of research in Biochemistry lab all over the world are mainly to understand the molecular basis of life. The area like protein Biochemistry identifies and understands proteins and enzymes and characterizes the function and their role in a biochemical reaction. Structural Biology is the area to understand the three-dimensional structures of bio-machineries at atomic level resolution using sophisticated techniques like X-ray crystallography, cryo-electron microscopy and NMR. Researchers are also working on cell biology, cancer biology, synthetic biology/bio-printing, antibiotic resistance, drug discovery, Bioinformatics/computational biology, immunology/antibody engineering, Virology/vaccine development, Bioelectronics/Biosensor and many more interesting topics.      

Although we know a lot about basic chemistry that explains some of the most complex phenomena in the universe but unfortunately, we still do not know everything about ourselves and the biological systems around us. We need thousands of trained biochemists (like you would be) to solve the most challenging problems in biological science. Right now burning problems are antibiotic resistance in pathogenic bacteria, the development of therapeutics for diseases like cancer and Alzheimer’s, resolving unknowns about the human brain and its functions, etc.  We need biochemists to contribute to our current development of gene therapy techniques to cure diseases associated with congenital genetic disorders like Haemophilia, Muscular dystrophy, Thalassemia, and many more. You can also contribute to human sustainability in the era of environmental crisis by implementing genetic engineering to improve food production, recycling water using microorganisms, developing new ways to control heavy metal and plastic pollution, development of biofuel/Hydrogen/microbial fuel cells as an alternative to overcome fast depletion of natural fuel resources, etc.  Please keep in mind that the path of biological research is not smooth at all; you have to be prepared for continuous failure, unsuccessful experiments and plans, sleepless nights, irregular lunch and diners and many more. However, the role you are going to serve as a Biochemist for the benefit of humankind is unique and invaluable for the well-being of all of us.

biochemistry
Figure: The mechanism of inhibition of the RNA-dependent RNA polymerase from SARS-CoV-2 by remdesivir have been discovered using cryo-electron microscopy technique which is associated with structural biology and students with a degree in Biochemistry can participate similar kind of research.

Career Prospects Post Pandemic – What prerequisites to know around Advertising Research?

What is Advertising Research?

As it has been known to all this advertising research falls under the gamut of marketing communication as paid form and sponsored ideas intrigues with this.

The moment we say that it falls under marketing communication, the potentials for knowing the market and its underlying category (customer/consumer/clients/audience); all is needed is research. The best meaning can be got through is ‘Research’; which helps the need of the consumer as well as to get the pulse of the competitors in and around.

There are few synonymous for this term such as Market research, marketing research, Brand Communication research.

Background and History of Advertising Research- The history of advertising research states us moderately a jiffy about its contemporary position. Although approximately advertising agencies have had research departments from the beginning, the actual affluent days came between the 1930s and the 1970s.

During this period, advertising agencies espoused research departments for two basic Reasons:

(1) The propagation of advertising research in the culture during this period suggested its necessity, and

(2) Other advertising agencies had research departments.

Various dimensions of Advertising Research-

Types of Advertising Research

Advertising research should be intended to tell you how operative your advertising plan is at reaching and coaxing customers.

This research is beneficial no matter what form of advertising you use, including print, television, radio, and digital. Advertising research can focus on different areas of the advertising process, including:

Target Market

It is all about doing research to know the habits and preferences of your target customers to ensure the advertising campaign. This eventually helps to identify and know who customers are, what difficulties they have, what assistances they are look for, and what type of messaging will reverberate with them.

Researching your target market can be cooperative if:

  • To attract new customers.
  • To retain potential consumers.
  • You are escalating your business market.
  • Your advertising is not reverberating with your set target market.

Another important aspects of advertising research is ‘Brands’ which are not defined just by their products or services.  A brand is made up of much more; it has its own personality (contributed to by its employees), its own mission statement, its own goals, its own ethos, even its own humour (see Innocent drinks for an example).  However, a brand’s perception is not owned by the brand itself, rather it is owned by the customer, based on how they see and feel it.

Response to Ads

Understanding how tangible customer/consumer in your aim demographic respond to ads can help you create a strong and effective advertising campaign. In this type of research, customers are shown different ads and are asked what they think about the products that are featured, whether they would consider purchasing them, and how well they understand the product after seeing the ad.

Outcomes and Success

Generally, research is done to measure the success of each advertising campaign. Understanding the effect advertising has on sales, customer perception, and lead generation, along with reoccurrence on venture also need to be taken into consideration, it further helps in saving time and resources. You can further go for comparative analysis of advertising across diverse media or markets. This can help your business comprehend whether it needs to revise its advertising strategy.

A clear benchmarking needs to be done for successful campaign for any ads to track customer response, such as exclusive assembling codes, coupons, or web links.

Well-articulated advertising research won’t just influence your advertising strategy. As with any constituent of your marketing mix, the eventual goal is to upsurge sales and grow your business.

The question or thoughts get provoked in following points

What is advertising analysis? 

What’s the difference between a ad audit and ad analysis?

What is a ad association, attribute or perception?

What’s more important, understanding the tangible or intangible elements of an ad?

Importance of Advertising Research-

Questions such as- “Why netizens follow every trend of advertisements on a serious note?” “Who is a consumer?” “Why digital ads become viral?” “Why people believe whatever they see ads online?” can be answered only through advertising research. Advertising Research helps in- understanding the vehicles of media better, recognizing and empathetic negative effects of ad messages, and developing advertising literacy content. Ad research has the potential to bring another phenomenon to create ‘Acts’ instead of Ads. And so, there is a calamitous need to investigate the nature of advertising along with studying the audience in depth in order to understand its impact and reach. Now just think and feel how you perceive and feel about doing or be a part of this advertising research? Is it essential? Research is an continuous determination that requires lots of human power (knowledge to pulse of the audience) and hence “the supplementary, the additional”. I urge all the aspire students who have inclination towards advertising should know more about research to join this interesting and very much relevant field. To conclude I would like to end with a quote – ‘advertising is a story unfolding across all customers touch points!!!”.

Post-pandemic career prospects in sound

Summary: A discussion about the subjects related to sound and the respective career opportunities.

Introduction: Though pandemic made the lives of sound professionals a bit miserable like it did for many others, now it is back to quite normal.  The cinema, radio, music and television industry are again back in full swing after a small dip in the graph. So for those interested to build a career in the audio, it is necessary to understand the subjects related to sound. Hence, first I will give a brief idea about the subjects related to sound and then I will mention the career opportunities.

How to begin? : The study of sound is a vast field. It is like an ocean with innumerable waves that one can choose form. Precisely the subject of sound is a field of study that deals with how human beings perceive sound. That perception can be manipulated for a better listening experience. That’s the primary goal of a sound practitioner. Now this listening experience of human beings varies according to the sonic environment, where the listener places himself. Depending on this varied listening environments, the science of sound could be studied differently. This is why study of sound has given birth to many disciplines. For example, sound engineering or audio engineering, sound designing for cinema, theatre, radio and television, music production, live recording for cinema, television, auditorium shows, podcasting, acoustics, and sound installation to name a few. Now let’s have a brief idea about each of the field mentioned above.

  1. Sound Engineering/Audio Engineering: This field is a bit technical. To pursue a higher degree in sound engineering one should have a clear understanding of basic physics and mathematics of higher secondary standard. In this subject students are taught about the technical or engineering aspects of the sound systems that are responsible for generating, recording and processing sound for various fields. For instance, in this subject of sound engineering students learn details of microphones including how and where to place them. In other words students develop an idea of selecting suitable microphones for specific purposes. Similarly they learn about speaker systems, how to manufacture them and how to select suitable speaker systems for given sonic environments. They are also taught about the relation between sound reinforcement systems and various types for enclosed and open environments.
  2. Sound Designing: This field focuses more on the aesthetics of sound with respect to various media like cinema, television, theatre, radio etc. It does not require hard core knowledge of physics and mathematics that is required to study sound or audio engineering. Instead it requires a creative drive or passion to play with sound. In this course students are generally taught how to evoke an emotion from within the hearts of an audience. That’s the primary purpose of studying sound designing and it is not as easy as it sounds. To play with the emotion of an audience requires absolute mastery over the art and craft of sound. However, this course introduces students with Digital Audio Workstation or DAW equipped with software, computer, mixing console, sound card, microphones, speakers etc. all installed within an acoustically treated room for a specific purpose. However to design a DAW, the help of a sound engineer is needed. DAW is a concept that has come from cinema post production and then it has been incorporated in the field of television and radio too. For theatre the support of DAW is often required to predesign the sound track for the show. But the live arrangement might also be needed for the same. For cinema generally students are extensively taught about the sound elements like dialogue, music, ambience and foley and to record these elements students are taught how to operate a dubbing studio for dialogue, how to operate a studio for music, how to record and lay ambience in a DAW and how to operate a foley studio. Besides they are also taught about creating and working with various sound effects.
  3. Live Recording: This field is probably the most adventurous part of sound. It requires extreme travelling. For cinema there remains dedicated location audio engineers, whose job is to record clear audio especially dialogue at the location of shooting itself. So in this course students are taught about the dedicated location audio gears and how to record with them. Also this field requires extreme man management skill as the location engineer and his/her team must know how to handle actors and other crew members at shooting spot. Apart from cinema, live recording is a challenging and well paid job for music shows. So the students of this course are taught extensively about setting up sound reinforcement systems for  music shows for example in a stadium. Besides they are also taught about how to manage sound reinforcement system in an enclosed environment e.g. an auditorium.
  4. Podcasting: Podcasting is comparatively a new buzzword. This became popular with the arrival of internet. This is nothing but making an audio track available for downloading for other users. It could be either free or paid. So the students of podcasting are mainly taught about the same thing related to sound designing. There is a trend nowadays that podcasting could be done with a smart phone. It is true that it is possible. But the quality of this type of audio will always be questionable and unprofessional since however digital we might become, our ears are still analogue, microphones and speakers are still analogue and will always remain so. So the quality of a podcast will always indicate whether it has been recorded in a bad or good studio or acoustically controlled environment. So the students of podcasting are taught about the quality of an audio track especially about the difference of recording with a bad set-up and a good set-up as quality does matter in the long run.
  5. Acoustics: This field is basically the study of behaviour of sound in a specific environment. Basically it teaches how to build up an environment for soothing aural experience. It could be a cinema hall, an auditorium, a shopping mall or even a house. All require acoustic treatment to avoid the irritating unwanted sound or noise of surroundings. So the students of acoustics are taught about architectural designs for less noisy and soothing sonic environments. However, this course requires basic idea about mathematics and physics as a prerequisite.
  6. Sound Installation: This is another field of sound. This course teaches about sound reinforcement systems and how to install them. For example, in a multiplex of, say, four cinema halls, the sound reinforcement systems are to be installed. This course teaches about how to do that. It requires basic ideas about electronics and electrical engineering along with thorough knowledge of sound engineering.

Career Opportunities: So studying any of these subjects will open the doors for a professional to work as

  1. Sound Engineer
  2. Sound Designer for movies, television, radio and theatre.
  3. Studio Manager
  4. Acoustic Consultant
  5. Digital Remastering Engineer
  6. Live Sound Engineer
  7. Studio Designer
  8. Academician
  9. Entrepreneur
  10. Technician
  11. Researcher

Conclusion: In a nut shell to become a sound professional requires hard work, patience and passion. There are many schools in India and abroad that teach various disciplines of audio and now the cinema, television, radio and internet portals are operating in full swing after being hit by an instantaneous wave of the pandemic. The demand for the right sound professionals is higher than before as both the audiovisual and audio-only contents are becoming more and more popular every day.  All you need is to develop the right skill sets and aptitude for audio. Then the world is yours!

Dramatic Change in Chemistry Teaching and Learning during the COVID-19 pandemic

Abstract: The COVID-19 pandemic has caused teaching institutions to switch from face-to-face instruction to online remote instruction. Chemistry teachers have to deal with this as well. Teachers had attempted to conduct learning using a variety of technological platforms. Furthermore, the majority of them had trouble organizing lab activities. Because the end of the epidemic cannot be predicted, this presents a set of obstacles and opportunities to consider integrating online chemistry learning from time to time. However, chemistry exhibits a positive attitude in this pandemic period due to its importance in the pharmaceutical business, which serves as a symbol of optimism.

Throughout the year, the world has experienced various crises. Sometimes it’s because of world wars, other times it’s because of invasions, other times it’s because of natural disasters, and other times it’s because of several pandemics. Various moderate to severe pandemics have emerged all over the world or in some regions of the world, till now. Bubonic plague, Spanish flu, SARS-virus, HIV, Pox, and other diseases wreak havoc on people’s lives and the global economy. The COVID-19 pandemic has recently impacted the entire world. It all began in the middle of 2019 in Wuhan, China. It has spread all over the world by the year 2020. For several months, almost the entire planet was on lockdown.

During the pandemic every institution went under online mode completely. Earlier it was quite difficult to switch everything into online mode. But there, technology came like an angel. Technology brings new challenges to teaching, including developing knowledge about technology and the integration of the technology with content, teaching, and learning. The technology referred to here is the technology that which can help teachers to represent concepts, principles, or laws in a virtual way. Therefore, teachers should have competencies that include content knowledge, pedagogical knowledge, and technological knowledge. All virtual ways went through different virtual platforms (like, Zoom, Google Classroom, Microsoft Teams etc.). We also used WhatsApp, YouTube, Quizizz, and other apps for online chemistry learning. But learning chemistry is impossible without lab-activities. We used several recorded lab videos or online performed lab videos to solve this purpose, but 100% lab working learning is not possible. So, in some points technology can’t help us to deliver in that most effective way.  University closures may cause delays in graduation for students who are already in graduate school. When the universities closed in April 2020 in India owing to the coronavirus, students performing field or lab research had to stop working. The situation has been specifically difficult for Ph.D. students who were planning to defend their thesis that time. The closures have had a short-term influence on publication records as well. For kids that do modelling and have the opportunity, the situation may be slightly better. Many scientists are concerned that when the economy enters a downturn, they may have a tougher time obtaining federal research grants and other sources of support. Due to various nations’ policies for limiting the Covid-outbreak, many students have lost possibilities to study abroad. Postdoctoral students may be able to find a faculty position that hasn’t been cancelled. If they fail, they will most likely look for positions in the industry. Postdocs who move into her tenure-track post believe that their universities will fairly evaluate any delays in the research and progress of new faculty members. Other than this, The COVID-19 pandemic has a negative influence on higher education due to the long-term pandemic situation and onerous measures such as lockdown and stay-at-home directives. There is an urgent need to create interventions and preventive methods to address college students’ mental health.

Chemistry jobs allow scientists to address fascinating challenges while also allowing them to build something engaging and valuable. Layoffs become a source of anxiety during economic turmoil and decline. Layoffs may be on the rise again as a result of the current coronavirus outbreak. The cutbacks had already been implemented in the pharmaceutical business, while the chemical industry had increased by 16 percent in 2018. On the other hand, controlling this pandemic outbreak, along with biology, chemistry is one of the most important fields that contribute maximum. Starting from Covid-19 infection pattern determination to vaccine development, chemistry plays a big role. Due to the COVID-19 pandemic, the global chemical and materials industry is undergoing a complete transformation, resulting in increased demand for protective gear and disinfectants, increased demand for antimicrobial supplements, and an increase in the absorption of plastic and glass for the construction of protective equipment. However, due to economic constraints and supply chain interruptions, the industry is expected to suffer in the coming days. The chemical market, on the other hand, may benefit from increased demand for textile materials used in a variety of health and hygiene goods. As the demand for sanitizers and various medicines grows, the chemicals segment has the potential to grow quickly. As a result of all this chemical market will reach to new peak soon. All these things overly enhance the employability for a chemistry students in near future. Hope all of those issues will be solved soon. Hope whole world will be back in its track soon.

Skip to content