Why should we learn Nanoscience? Impact to our Society

In 1959, Professor Richard Feynman in a public lecturer at California Institute of Technology shared his thought about the strange behaviour of small particles. His lecturer was entitles as: “There’s plenty of room at the bottom”. Professor Feynman actually gave us the idea to enter into a new field of Physics, today it is known as Nanoscience. Professor Feynman in his lecture also talked about “How do we write small”, “Information on a small scale” and the importance of developing better electron microscope. All his novel ideas have created breakthroughs in the field of nanoscience.  

Nanoscience enables us to study the properties of system at nanoscale and Nanotecgnology enables us to organize and manipulate the properties and behaviour of a system in atomic or molecular level. Nanoscience has wide prospect and finds application in various different fields. Here I describes application of nanoscience and the scope and prospect in this field.   

What is nanoparticle?  

A particle has dimension of nanometer size. The question is how small one nonometer is. The 1 nm (1 nm = 10-9 meter) is one billionth of a meter or equivalent to 10 Å (1 Å = 10-8 cm). Nanosized particles of a substance exhibit different properties and behaviours than larger particles of the same substance. Carbon is very common also very abundant material in nature. We are aware of its two different forms; graphite and diamond. During 1985 to 2004, scientists have discovered three new allotropes of carbon. They are known as fullerene (known as Buckminsterfullerene: C60), carbon nanotube and graphene.     

Fullerene: In 1985 a group of scientists lead by Prof. Harry Kroto had discovered a small structure in which 60 Carbon atoms are joined together in one unit. The structure is quite similar like a football. In this fullerene structure we could see hexagon + pentagon pattern. Prof. Kroto and his collaborators were awarded the 1996 Nobel Prize in Chemistry. With the advancement of technology various different structures like fullerenes with larger number of carbon atoms (C70, C76, C80, etc.) were synthesized.   

Graphene: Graphene is 2-dimensional nano-structure. It is a 2D sheet of single layered carbon atoms arranged in hexagonal lattice. Graphite is actually made of millions of layers of graphene. In 2004 at the University of Manchester, Andre Geim and K. Novoselov produce graphene from graphite using a scotch tape in laboratory. Professor Geim and his co-workers were awarded Nobel Prize for Physics in 2010. Graphene is the most useful and thinnest 2D nanomaterial due to its extremely high electrical conductivity, transparency and tensile strength.     

Carbon nanotube (CNT): CNTs are cylindrical nanostructure consists of one or more layer of graphene sheet. Diameter of single-wall CNT (SWCNT) and multi-wall CNTs (MWCNT) may vary from 0.8 to 2 nm and 5 to 20 nm respectively. A single-wall CNTs can be realize as cut-outs from a 2D hexagonal graphene sheet rolled up along one of the Bravais lattice vectors and thereby form a hollow cylinder. CNTs exhibit remarkable electrical conductivity. Single-wall CNTs are metallic but multi-wall CNTs are having small band-gap. CNTs exhibit exceptionally high tensile strength and thermal conductivity. These properties of CNT make them valuable and are used in electronics, optics, biological and biomedical research. 

Exciting Properties of Nanoparticles

Super surface activity: Nanoparticles exhibit strong reactivity due to much higher surface to volume ratio. With decrease of particle size the number of particles at the surface increases. This leads to a significant energy contribution to the system from the unsatisfied bonds of the surface atoms. Hence, the surface becomes extremely ‘active’ due to the high available surface energy. This effect finds applications in: adsorption of toxic gases, catalysis, etc.

Superparamagnetism: A ferromagnetic particle behaves like a paramagnet when particle size is made very small. Ferromagnetic solid consists of small magnetic domains and spins are aligned inside the domain. If particle size is reduced to very small size (typically < 20 nm) the entire particle becomes a single domain. With further reduction in particle size (< 5 nm) ferromagnetic property is lost. Therefore in the absence of external field the particle behaves like a paramagnet and in the presence of a field spins are getting aligned leading to a large magnetization, also known as super-paramagnetic behavior.

Super-hydrophobicity: If surfaces are highly hydrophobic (super-hydrophobic) then they are difficult to wet. The contact angle of water droplet may exceed 150o on a super-hydrophobic surface. Surface roughness is increased at nano-scale therefore actual contact area of the surface decreases and hence the surface becomes non-wetting. The super-hydrophobic coating is used in vehicle windshields and maritime industry.

Why nano-scale become so Important?

Nanoparticles exhibits some unique mechanical, optical, magnetic, and electrical properties that are distinctly different from that of bulk materials. It was found that nanoparticles exhibits enhanced activity when subjected to similar applications. A few are discussed below.

  • Nano-crystals have lower melting point and has reduced lattice constant (difference can be as large as 1000oC).
  • Due to high surface to volume ratio nano-crystals are used for catalysis, drug delivery and energy storage.
  • Semiconductor nanocrystals have larger band gap than that of bulk semiconductors.
  • Ferroelectric and ferromagnetic materials lost their ferroelectricity and ferromagnetic property at the nano scale.
  • A system composed of nano-particles can conducts electricity better.

Applications:

Use of nanotechnology includes sports equipment, vehicle parts, storage of power in batteries, cosmetics, drug delivery and many more. Scientists are working with nonomaterials with a hoped that nanoscience will control our health-care system in future. We all use sunscreens; it contains ZnO or TiO2 nano powder to avert sunburns. Nano-science is combined with bio-science naturally because in general the bio-molecules that we are dealing with (e.g; DNA, RNA, proteins, enzymes) are all within the nanoscale range from 1-100 nm. In November 2012, Scientists at NIST (American National Institute of Standard and Technology) demonstrate that SW-CNTs can protect DNA molecules from oxidation.  Here I illustrate some more applications of CNTs in bio-medical research.

  • CNTs are bio-compatible and having low-level of toxicity.
  • CNTs are elastic cylindrical tubes with both ends open and therefore can be used in intracellular delivery.
  • Due to high tensile strength, CNTs filled with calcium and grouped in the structure of bone can act as a bone substitute.
  • For biomedical application, functionalization is required and it is possible for CNTs. Functionalization may improve biocompatibility and also reduce the toxicity level.

CNTs can enter into cells by binding their tips to the cell membrane receptors. This actually helps in drug delivery. 

Bureaucracy: Fascination for Power

“Bureaucracy is the art of making the possible impossible.”- Javier Pascual Salcedo 

Bureaucracy in modern India started its journey with the handholding of the British. Since, it’s initial days it is a fascination among Indians both fear and desire. During the British empire used to function through its bureaucratic setup. It connects the metros with the outpost of the empire. After the breakup of the empire, bureaucracy setup has been adopted by the former colonies. 

Bureaucrats are the office holders who serve the executive functions of the government in India. The bureaucrats are responsible for implementing the policies of the government. People working as bureaucrats face lots of challenges in their career too. Also, they enjoy various benefits from the government. Combining these pros and cons, millions of aspirants every year try their luck in respective exams with the hope of getting selected as a bureaucrat. 

The following points enlist the reasons behind the craze among the people for being bureaucrats. 

1) Secure life with a decent salary: In this competitive world, money is the most essential instrument for leading a happy and a peaceful life. The job of a bureaucrat offers a handsome starting salary with high increments along with promotions. The office holders can lead a standard life with their families. This makes the job so attractive among the people. 

2) Facilities: The government provides lots of facilities to the bureaucrats including electricity allowance, travelling allowance, telephone, internet, and so on. They get residential apartments too from the government. All these factors add security to their life and make it smooth. 

3) Attracted by the position: The volume of immense authority and power given to the bureaucrats, make the position very demanding. The bureaucrats are in the charge of complete control over an area allotted to them. They are respected and saluted by the entire population of that area. This image about the bureaucrats is created in the minds of the people who aspire for the jobs. This particular image is passed from one person to another which increases the number of aspirants every year. 

4) Willing to control the policies and administration: The society runs as per the government’s policies and interventions. So, in order to control the good and bad happenings in the society, one has to stay in touch with the respective organs of the government. The civil servants can directly stay in touch with the leaders who frame the policies and run the administration. So, they can directly influence the society through their actions and decisions. The bureaucrats can alter any malpractices rife in the society. People who are willing to take that role have craze for being bureaucrats. 

5) Influenced by the social media. The social media these days play a significant role in generating new civil service aspirants each day. The coaching institutes offering courses for preparation for civil service examinations site examples of some successful aspirants who got selected as bureaucrats. 

They add audio and visual effects to the images and videos of those bureaucrats to charge the viewers for being civil service aspirants. Then they advertise about their coaching institutes and enlist the courses offered and facilities given. All these activities generate new craze among the people for becoming bureaucrats. 

These are some of the major factors that makes people desire to become bureaucrats. Not only this field has positive sides, but also it involves many challenges, the initial challenge being the selection as a bureaucrat. So, one must choose their career option wisely and not get influenced by any external lures from friends, relatives or the people involved in the business with the aspirants. 

Comparative approach and Liberal Arts

The tide of liberal arts is now sweeping the differences between various academic disciplines all across the world demolishing the demarcations between STEM (Science, Technology, Engineering and Mathematics) subjects and NON-STEM subjects. As a result it is also trying to break the stereotypes that are tagged with this demarcation of disciplines that are automatically getting responded as just constructed and imposed shadow lines. It also reminds us of the days of polymaths who existed in different civilization across the globe in various time periods.

Today we all live in an application based world, where knowledge has to be applied, and to solve this purpose we are all trying to make paths towards the practice of liberal arts in the field of education and India is not an exception in this regard. When we talk about the application of knowledge we must remember that this appliedness of knowledge is only possible if we can take education outside the boundaries of an educational institute.

In the year 1964 Sturart Hall and Richard Hoggart founded the Centre for Contemporary Cultural Studies (CCCS) at the University of Birmingham with the objectives of taking education outside the university campus and encouraging the students to have a firsthand experience with the community, so that they can develop a better understanding of their respective community as a whole.

In other words this was an important step to implement the idea of Academic Social Responsibility. This new teaching and learning pedagogy once again may help us to bring science and humanities together to give shape to the academicians with the understanding of their responsibilities towards society. This also opens up the possibilities of collaborative curriculum designing, for outreach activities and also accommodates our eternal ‘quest for relevance’ as per the time and space we belong to. This may remind us of the Kenyan author Ngugi Wa Thoing o ‘, who engaged in a protest against Eurocentricism in the field of education while discussing ‘quest for relevance’. In the process he encouraged the academicians across the world to have this quest while designing the curriculum.

Thus from the above discussion it is clear that the current educational scenario is ready to welcome an interdisciplinary approach towards education. We have to remember that comparative literature has long been accommodating this interdisciplinary approach and thus giving the platform to study literatures from across the world in an interdisciplinary manner and thus may play a key role in the development of liberal arts.

Comparative literature encourages the study of literature using a comparative framework. Students under such a frame work are encouraged to study many literatures together. Thus it creates the room to read and to critically engage with the literatures produced in various languages from different parts of the world.

Boundaries of such comparative approach is absolutely fluid, it can thus make teaching learning pedagogy multimodal in nature, further breaking the barriers between various existing disciplines. According to Susan Basnett comparative approach gives us the scope to study texts in relation to one another. Thus, comparative approach is the key to practice liberal arts.  

Singular perspective focuses on a particular issue, whereas a comparative approach gives a broader spectrum of understanding. Comparative approach in a way reproaches the singular independent existence of disciplines. It sees the existence of all disciplines not in an independent fashion but in an interdependent fashion, thus provides a platform for the practice of liberal arts.

Liberal arts thus with a comparative approach makes all barriers fluid. It makes all geo political boundaries and linguistic boundaries blurred in its attempt to connect with everyone. This reminds us of the German author, Johann Wolfgang von Goethe and Rabindranath Thakur, who also referred to this idea of connectivity among the people across the world through the exercise of a comparative approach.

Liberal arts and comparative literature both widens our spectrum of reading texts. At this juncture we must remember that texts are not only printed books, every incident that happens around us and among us is a text. Liberal arts focus on training its students in reading these texts of which they themselves are a part. This process serves a twofold objective – firstly the students get the opportunity of a firsthand engagement with the society and secondly they go through a reality check regarding their ability to apply the knowledge that they have acquired in their educational institute.

Both liberal arts and comparative literature together investigates and questions whatever is given. Both jointly vehemently discourage a blind belief in anything given. Liberal arts is probably the only sect of knowledge that dares to question the formulation of knowledge itself. Being a part of an institution liberal arts tries to question the process of institutionalization.

Comparative approach helps liberal arts to get a wholesome, inclusive and comprehensive understanding of our society. Connection is the key component of liberal arts.  This connection that we are referring to is the connection of our work and knowledge with the humanity and human concerns.

It is not just the imagination of certain authors but different historical eras have witnessed that whenever knowledge has lost its contact with humanity and human concerns, hell was let loose on mankind, be it the violent process of colonization or be it the transformation of nuclear power into a destructive bomb.

In today’s world we are all connected at different levels, sometimes we realize and sometime we do not. We cannot exist independently anymore. Thus the academic disciplines designed by us too cannot exist and have never existed independently.

The mission of liberal arts is to break science and humanities stereotyped binaries, that are imposed on both, by showcasing the connectivity that has existed between the two since the time immoral, at the same time liberal arts has the objective to connect both the dimension of knowledge systems with the human concerns. Liberal arts with a comparative approach reminds us that human beings with their knowledge need to serve human concerns. 

 

Is Operations Research useful in Data Science?

“Operations research (OR) is defined as the scientific process of transforming data into insights to making better decisions.”

The Institute for Operations Research and the Management Sciences (INFORMS)

Introduction:

In the twenty-first century, especially in the last decade, the most trending domain of study is may be Data Science and Data Analytics. In this domain of study, people work with data from different fields and they use different tools and techniques from the domain of Mathematics, Statistics, and Computer Science to study and analyze the data. Then make some conclusion from the data and use them to predict the future of the phenomenon under study. Before the rise of data science as a domain of study, Operations Research analyst and Statisticians are used to do the similar kind of job. Due to these facts, the overlap between the domain of Data Science and the domain of OR is misunderstood. Also, there is a common perception that OR is not useful in for Data Science or Data Analytics. Actually, the marketing of OR products and services which are applied to solve the real world problems leads to this kind of misconception, as most of the time the end-users do not have an understanding or background of OR and data science. Another possible reason may be that the availability of machine learning models which are available as packages of several platforms like Python and do not really contain specific any OR models. In practical, OR tools and techniques are applicable to data science. In fact, a lot of ideas which are used in Artificial Intelligence (AI) and data science problem solving, have cross-pollinated from OR due to the large overlap in the techniques and methods used. In this blog, I try to explore these relations of OR with Data Science and Data Analytics.

Data
Image Source: https://www.humancenteredor.com/2015/03/

Operations Research and Data Science:

Before going to the discussion on the role and relation between Data Science and OR, let us try to understand another very important term called Analytics. According to INFORMS, Analytics is the application of scientific & mathematical methods to the study & analysis of problems involving complex systems. There are three distinct types of analytics:

i) Descriptive Analytics gives insight into past events, using historical data;

ii) Predictive Analytics provides insight on what will happen in the future; and

iii) Prescriptive Analytics helps with decision making by providing actionable advice [https://www.informs.org/Explore/Operations-Research-Analytics]. In an INFORMS podcast, depending on organizational backgrounds, Glenn Wegryn divides Analytics into two distinct camps: Data Centric Analytics where data is used to find interesting insights and information to predict or anticipate what might happen; and Decision Centric or Problem Centric Analytics which is used to understand the problem, then determine the specific methodologies and information needed to solve the specific problem. This data centric analytics are done by using Data Science whereas problem centric analytics are done by Operations Research. The above mention figure clearly give an idea about this. From the figure, it is very clear that there is a common point of interest from both the domain. Hence OR plays a very important role in Data Science domain.

Operations Research and Machine Learning:

Machine learning is the area of data science where most of the OR tools and techniques are used. Linear programming and Optimization techniques are fundamental part of the overall machine learning lifecycle. Some of the examples of OR are:

  • Enabling smart human resource management by forecasting human resource requirements and optimizing daily schedule for resource persons (linear programming model)
  • Increasing TV program viewership by optimal scheduling of programs’ promotion (linear programming model)
  • Enabling supply chain transformation by providing AI/machine learning-based recommendations for optimized product utilization
  • AI-enabled forecasting for retail and eCommerce applications to optimize funnel and customer traffic
  • Data-driven optimization models for automated inventory management where we need to do warehouse management, inspection and quality control

Operations Research and Artificial Intelligence:

Another important area of data science is Artificial Intelligence where we can observe the use of OR algorithm. AI is used to build an automated system. Now, any real-life system have many decision variables and parameters, so if we want to build an automated system then we have to deal with a lot of decision variables. That’s why operations research algorithm must be a core engine in the system.

An Artificial Intelligence development lifecycle consists of the following steps: (Link)

Descriptive and Predictive steps:

  • In the first step, we need to define the problem to be solved
  • In the next step, we need to understand the current state of the problem and accordingly we have to define the work scope
  • Next we need to develop a Machine Learning model, where the machine learning solution is developed and tested.

Prescriptive steps:

  • Machine learning outputs or the predictions obtained using machine learning are given as OR inputs. Here, the OR techniques are used to make recommendations based on the outputs from the ML model. This is a critical step for the entire life cycle.
  • Finally, the solution output is delivered to the client.

Covid-19 impact:  

During the COVID-19 pandemic, more than ever, data science has become a powerful weapon in combating an infectious disease epidemic and arguably any future infectious disease epidemic. Computer scientists, data scientists, physicists and mathematicians have joined public health professionals and virologists to confront the largest pandemic in the century by capitalizing on the large-scale ‘big data’ generated and harnessed for combating the COVID-19 pandemic. (Zhang, Qingpeng, et al. “Data science approaches to confronting the COVID-19 pandemic: a narrative review.” Philosophical Transactions of the Royal Society A 380, No. 2214 (2022)). Covid-19 has a big impact on supply chain strategies also. People from data science community are analyzing “lessons learned” from the pandemic to better prepare and more efficiently and effectively respond to the next disaster, interested people can visit the following for a discussion on it (Link1).

Conclusion:

From the above discussion, it is very much clear that Data Science and Operations Research have some overlapping objectives with clear line of difference between these two domains of study. Also, we observe that there are several OR techniques and algorithms which have important role to play in different topics of data science. In my opinion, operations research together with data science and analytics is going to play a very important role to build the future of us.

Computer Aided Diagnosis: A Spectacular Achievement in Health Care

Artificial Intelligence has the great impact in health care. It can assist doctors to detect or diagnosis a disease at early stages. In developing countries like India has very low patient and doctor ratio. As a consequence, the performance of the manual detection of the disease often degrades i.e., doctors may overlook the early sign of the disease and patients can suffer death. In order to decrease the mortality rate of several diseases, Computer aided detection or diagnosis may be a potential solution.  It is a computer-based program which analyse different radiological image modalities and predict the presence of the disease. Consequently, it can be said that these types of technology can provide some treatment facility to the patients where minimum treatment facility is available. In early 1980’s, based on the symptoms of the patient researchers have proposed several algorithms to predict the presence of the disease. However, these methodologies were not acceptable to the medical community. In 2005, International association of Computer Aided Diagnosis established and they first approved the prediction of breast cancer from mammography in clinical practice. After that several researchers have proposed several CAD methodologies for early diagnosis. They give emphasis mostly on early detection of different types of cancer from different organs. The basic challenges of implementing such system are present of sufficient amount of annotated patient data. The collection of patient data from different hospital is a tedious job.

However, several researchers have proposed different medical image datasets by collaborating with different hospitals. In order to predict lung cancer at early stages, LIDC-IRDI dataset is introduced which consisted of 1081 Lung CT images and these data are taken from 7 different hospitals of United States of America. This dataset has been released in 2008 and the CT scans are taken from a 32 slice CT scanner i.e., the images are taken from the old CT scanner machine. In present context, most of the hospitals use a 64 slice CT scanner machines and the implemented models are not provided satisfactory results if researchers have considered this dataset. Moreover, this dataset only provides the information about the presence of the abnormalities but not confirm the presence of cancer in it. These necessitates a new benchmarking dataset that consists of the CT scan of a 64 slice CT scanner and also have the information about the disease. The researchers of University of Calcutta have introduced a new public dataset “Swash” for the lung cancer researchers which consisted of 289 CT scan machines and all the data are biopsy proven. Like lung cancer, researchers have also introduced BRAST datasets for Brain tumor detection, MIAS dataset for breast cancer detection and diagnosis from digital mammography, DRIVE dataset and DRISTI dataset for diabetic retinopathy detection from FUNDUS images.  These aforementioned datasets have been used for implementing several CAD methodologies for early detection of the disease by considering the different algorithms of machine learning (ML) and deep learning. The researchers of United states of America, have designed a ML-based methodology that is capable of detecting breast lump from digital mammography, after that the computer-based technique is also capable of grading the stage of cancer. The researchers of Redbound University and University of Calcutta proposed a fully automated software tool that is capable of predicting lung cancer from Computed tomography images. Instead of having higher accuracy in brain tumor detection from MRI images, the Machine Intelligence Unit of Indian Statistical Institute have proposed a novel methodology that can assist clinicians about the post-surgery survival of brain tumor patients. Apart from cancer detection, the researchers also tried to propose several CAD methodologies of other diseases. At the middle of the pandemic era, researchers have proposed several methodologies that are capable of detecting COVID-19, after analysing the digital chest X-ray and thoracic CT images. The published literature also reveals that their exist several ML and DL-based algorithms that are capable of detecting Alzheimer, Parkinson’s, Strokes, fractures, cysts from different modalities of medical images. Furthermore, the researchers are also capable of measuring the changes of abnormalities after several drugs are induced on the patients. However, the accuracy of these methods is quite satisfactory, but these models are implemented by considering several data which are taken from old scanning technology. As the precision of the scanning technology has been improved, the characteristics of the data has been changed and this requires advancement in existing algorithms or implementation of new model that can provide higher accuracy and these methodologies can use in clinical practice.

Biomass based biofuel generation future in India

Out of some of the hottest trends that have been on the top lists for quite a while are choosing an entrepreneur as the primary occupation and doing an eco-friendly business.

The need of renewable energy is increasing in the world due to rapidly growing human population, urbanization and huge consumption of fossil fuels. Fossil fuel reserve is very limited, and the reserve is getting depleted day by day. The primary sources of energy that can be used as the alternative of fossil fuels are wind, water, solar and biomass-based energy.

Currently biomass as a feedstock for biofuel production is gaining importance. Biomass energy is supplying about 10-15% of total energy demand of the present world. Biomass feedstocks include organic material such as wood, wood-based energy crops, grass, lignucellulosic materials like wheat straw, rice straw, sugarcane baggase, corn, microalgae, agricultural residues, municipal wastes, forest product wastes, paper, cardboard and food waste. Biomass can be converted into biofuels by thermochemical and biochemical conversion. Based on the types of feedstocks or biomass the biofuels derived are divided into different groups i.e. 1st generation, 2nd generation, 3rd generation. 1st generation biofuels mainly extracted from the food crop-based feedstocks like wheat, barley, sugar and used for biodiesel and by fermentation to produce bioethanol. But first-generation biofuels face the “fuel vs food” debate and also the net energy gain is negative.  1st generation biofuels production systems also have some economic and environmental limitations. To overcome the drawbacks of 1st generation biofuels 2nd generation biofuels have been generated from the non-food crops-based feedstocks like organic wastes, lignocellulosic biomass etc. For biofuel production from these sources rigorous pretreatments are required to make the feedstocks suitable for biodiesel production. This is the major drawback of 2nd generation biofuel production. Then the attention of the world has been shifted towards 3rd generation biofuel production entails “algae-to biofuels”. Microalgae is easy to cultivate, has higher photosynthetic rate and growth rate than other plants and there is no food vs. feed dilemma present of using microalgae as feedstock for biofuel production. Presently the attention is also given towards fourth generation biofuel. The former concept of third generation of biofuel deals with the conversion process itself from the microalgae to biofuel. The fourth generation of biofuel concept deals with development of microalgal biotechnology via metabolic engineering to maximize biofuel yield. Fourth generation biofuel uses genetically modified (GM) algae to enhance biofuel production. In comparison with third generation in which the principal focus is in fact processing an algae biomass to produce biofuel, the main superior properties of the fourth are introducing modified photosynthetic microorganisms which in turn are the consequence of directed metabolic engineering, through which it is possible to continuously produce biofuel in various types of special bioreactors, such as photobioreactors.

Biomass has the highest potential for small scale business development and mass employment. Characterized by low-cost technologies and freely available raw materials, it is still one of the leading sources of primary energy for most countries. With better technology transfer and adaptation to local needs, biomass is not only environmentally benign, but also an economically sound choice. Bio-based energy can be expected to grow at a faster pace in the years to come. 

On the Biomass Energy sector, the India government committed to increasing the share of non-fossils fuel in total capacity to 40% by 2030. India produces about 450-500 million tonnes of biomass per year. Biomass provides 32% of all the primary energy use in the country at present. A total capacity of 10145 MW has been installed in the Biomass Power and Cogeneration Sector. The Installed Capacity of Biomass IPP is 1826 MW together with the Installed Capacity of Bagasse Cogeneration is 7547 MW and the Installed Capacity of Non-Bagasse Cogeneration is 772 MW. 

The eco-friendly business has lots of benefits, by going green with your business you’re promoting the Earth’s safety from potential environmental catastrophe, you support innovation and concomitantly producing green energy.

The Government of India has been constantly bound on increasing the use of clean energy sources. This does increase a better future and at the same time creates employment opportunities too. According to The Ministry of New and Renewable Energy (MNRE), India’s total installed capacity of renewable energy is 90 GW excluding hydropower. Also, it states that 27.41 GW will be added. Renewable Energy in India is a great asset to Energy Contribution, yet India still needs to work a lot in Renewable Energy Sectors.

A LEGAL STUDY OF THE DEVELOPMENT OF THE COPYRIGHT LAW IN INDIA

The history of copyright is the tale of how the law has adapted to technical advancements. There have been significant technological advancements since the Rome Convention in 1961 and the final amendment to the Berne Convention in 1971. The introduction of digital technology has repeatedly put a major strain on the copyright regime. The WIPO had established two committees of experts [Committee of Experts on a Possible Protocol to the Berne Convention in September 1991 and the Committee of Experts on a Possible Instrument for Protection of the Rights of Performers and Producers of Phonograms in September 1992] to examine the effects of new technologies on copyright and neighbouring rights. These Committees, after exhaustive discussions, in which India was an active participant, drafted basic proposals for three new treaties, that is-

  1. Treaty for Protection of Literary and Artistic Works;
  2. Treaty for Protection of the Rights of Performers and Producers of Phonograms; and
  3. Treaty on sui-generis protection for Databases.

The Conference adopted two treaties, the WIPO Copyright Treaty and the WIPO Performances and Phonograms Treaty. The database treaty was deferred for further study.

Being a WIPO member and a party to the WCT (World Copyright Treaty) and WPPT, India has repeatedly revised its domestic legislation to be in line with international copyright standards. The Copyright (Amendment) Act of 1994 and the Copyright (Amendment) Act of 2012 serve as excellent examples of the sufficient degrees of advancement in Indian copyright laws that have been repeatedly seen.

The Copyright (Amendment) Act, 2012’s recognition of the performers’ rights under Section 38-A and the recognition of the performers’ moral rights under Section 38-B speak volumes about Indian jurisprudential thought and intellectual development in relation to the related rights in the area of copyrights.

The 50-year protection period offered by Indian law to phonogram performers and producers is in line with worldwide norms; the duration of the protection is not just adequate but also satisfactory. It is also a nice development that the period of protection for broadcasting reproduction rights has been increased from 20 to 25 years in the case of broadcasting organizations.

Since the passage of the Copyright (Amendment) Act in 1994 and the Copyright (Amendment) Act in 2012, India’s Broadcasting Reproduction Rights and Performers’ Rights have advanced significantly. In addition to the general-statutory and other economic rights, India has made a significant advance by focusing on and incorporating the idea of moral rights—that is, rights related to paternity and integrity—into its legal framework.

India is quickly catching up to its necessary credit, as in some countries, performers, phonogram producers, and broadcasters of copyrighted works are protected by copyright alongside authors, while in others, they are protected by neighbouring or related rights because of their role in distributing copyrighted works to the public as consumer goods.

What India is still to realize

  1. New media and technology give right holders new avenues for the distribution and exploitation of their works, especially online works, potentially opening up more chances for direct licensing. Systematic management of digital rights are intended to allow a greater range of terms and conditions for the use of those works while better distributing and protecting the right holder’s investment [however, India awoke to this realization and adopted Sections 65-A and 65-B by virtue of the Copyright (Amendment) Act, 2012]. Increased market adoption of these systems is anticipated to expand consumer choice and availability of copyright works, such as digital software and entertainment products, and to permit price points that reflect the consumer’s actual use rather than an assumption that the consumer will use the product in a variety of formats. All of this must further copyrights as well as copyright-related rights, such as the rights to privacy and publicity.
  2. In the digital networked environment, creators and performers want assurances that their moral rights will be upheld, especially by third parties, and that their creations and performances won’t be unfairly influenced.
  3. Since the WIPO Internet Treaties negotiations began, audio visual performers have been calling for an upgrade to their legal status on a global scale. As a result, India should proactive begin pursuing this goal on a national level. India cannot afford to lose sight of the Rome Convention, which is now incorporated on a global level and seeks to update broadcasters’ rights in response to market changes and technical advancements.

Overall, India appears to be well-equipped to provide the allied-right-holders, such as performers, phonogram producers, and broadcasters, with the necessary protection. It is hoped that India will continue to advance and meet the challenges presented by the wave of digitalized, networked environments ‘head-on’.

Career Prospects in Visual Arts in 21st Century Era

Visual art is relies on visual experience. A degree in Visual Arts can lead us to a many-sided career and life as an artist. Throughout this study, we will be exposed in art history, theory and criticism alongside intensive studio practices and experiences in drawing, painting, sculpture, print media, photography and multimedia art. We can exhibit our art work in group or solo exhibitions in galleries as professional artists. Visual arts include painting, drawing, sculpture, photography, architecture, design, crafts, films etc. It also includes applied arts such as industrial design, graphic design, interior design, fashion design etc.

Visual Arts can lead to many career options like Freelance Artist, Art Teacher, Art Historian, Art Consultant, Architect, Archivist, Art Editor, Art Gallery Director, Art Critic, Art Curator, Cartoonist, Cinematographer, Engraver, Exhibition Designer, Fashion Designer, Gallery Director, Graphic Designer, Illustrator, Interior Designer, Jewelry Designer, Museum Director, Product Designer, Set Designer etc. Today visual effect is a creative professional field for visual artists with many bright prospects. At present day most of the movies are overwhelmingly reliant on visual effects that mean VFX. Big budget franchises depend on highly creative and realistic effects.

Very simply, artists create works of art. Artists employ a variety of methods and materials to communicate a message, thought or feeling, including painting, sculpture, and illustration using oils, acrylics, watercolors, pencils, pastels, clay computers etc. Craft artists make hand-made objects, such as candles, tapestries, quilts, and potteries to be sold or shown. Multimedia artists create images for film, video and other forms of electronic media. Apart from these, artists also can find work with museums, galleries, schools, advertising agencies, magazines, newspapers, and movie studios.

In Graphic Design one artist can work as an Advertising Director, Logo / Branding Designer, Advertisement Designer, Sign Writer, Magazine Layout Designer, Packing Designer, Calendar / Stationary / Wallpaper Designer, Typographer etc. In Museums, one artist can work as a Curator with good knowledge of art and good communication skills. One can get job as Artist Representative with the knowledge of art, business experience (marketing and sales), organizational skills, self-motivation, and sensitivity to working with artists

There is another bright career in Art Gallery to work as a Gallery Director or Curator. Good business and marketing skills, communication and writing skills, fundraising skills, flexibility, diplomacy, ability to motivate others, sensitivity to artists’ needs, experience in exhibition design, curatorial work, sales, and art education can all be useful here.

Art Teacher as a career in Education

With the degree in Fine Arts, one can find his or her career as an art teacher in Education. Art teachers are generally required to have a Bachelor and Master degree in Fine Arts with the following art spheres: ceramics, painting, sculpture, media arts, drawing, photography, printmaking and graphic design.

Art offers us the space to express ourselves. Art education entails teaching students how to express their feelings and thoughts about their world. Art Teachers guide their students to develop their visual communication skills by producing various art forms. Art students may be in public and private schools, museums, summer programs, and other places where visual communication is learned.

Art Education arouses language in visual images. Art Teachers nurture students’ artistic skills at their school level. They also teach after school and summer programs to children, or in an adult education program such as ‘Teachers Training Program’. They can also work in Art museums as education coordinators. Along with being creative and passionate about art, Art Teachers should be able to motivate students to think about the subject critically and to understand students’ educational and emotional needs.

Artist Picasso once said that painting is just another way of keeping a diary. Art Teachers should go beyond painting and guide students to keep their diaries in various art forms. They should spur students to unlock their creativity while expressing their thoughts, feelings and opinions at the same time.

Future of Brand Communication and Management

Branding have been evolved hundreds of years, may be more than this. The meaning and prospect of this brand came into use over a decade. The meaning and narratives of brand communication has been progressed and it is not limited to a particular products and services but the horizon of branding widens its spectrum in a larger array. Here, will reconnoitres the concept of branding which have been advanced to a new paradigm, and would venture on what’s coming next.

 

The word Brand is etymologically derived from the word “Brandr”, a term from Ancient Norse meaning “to burn”. Around 950 A.D. the term “brand” denotes to a burning piece of wood. By 1300s this word was used to mean a torch, a factor which burns a piece of wood. This term brand further adds to denote to scorch the cattle of ownership by the year 1500s. The ownership status quo been conferred if their cattle got misplaced, ranched or lost. So, the development of using some similar trait of identifying their respective cattle were used. They had very simple, familiar identification and quick remembrance which lead and pave the way for ‘logo’ which is indispensable for brand identity and image.

Brand communicates to inform, persuade, guide, teach, evoke, enlighten, remind and gives a new insight about a product, service, company, organization to its stakeholders and persuades to pursue the positive perception of the products, service and companies’ strength and core values.

For the drive of easier comprehension, let us put some of those changes in the form of pointers:

  1. The Preponderance of Digital Media: with the advent of digital media, the traditional form of paid media push marketing strategy is no longer valid and lost its conventional power to hold and influence consumers.
  2. Personal Branding: the role of Influencer’s which is in the rise of social media platforms has changed the phenomenon of the conventional definition of personal branding. Social media and branding also the future of branding in a positive room which enables every company and organization to maintain and update their social media pages of triggering and disseminating useful information (Facebook. Instagram and Twitter).
  3. Brand Extension: it creates credibility and consumers gets varied scope of opportunity if the brand positively follows up for further extension.
  4. Brand Association: the top of the mind awareness (recall) and aided awareness (recognition) seems credible in digital age with the help of niche marketing strategy and native advertising.
  5. Co-Branding: this creates the blurred boundaries between global market products and services. So, no matter what, there is a prospect avenue for business collaborations both nationally and internationally. With the rapid changes in the pattern of brand communication, definitely this also need to be focussed international + local products collaboration (because generally the known businesses allies with the established brands).
  6. Brand Equity: Simply, the brand awareness, positioning and loyalty leads to brand equity and paved the way for understanding these three factors in a more diligent manner (recognition/recall/ aided awareness/ TOMA etc).
  7. Naming of the Brand: this gone beyond the graphics but the interactive media content spuriously based on the art, aesthetics, idea and creativity proves to be right in contemporary times. It more emphasizes the ideation blended with virtual reality and augmented reality.
  8. Viral Marketing: this strategy is a new norm to reach out to potential consumers through snowballing and e word of mouth.
  9. SEO: it enhances the website traffic to update the page of the website and searches through hashtags and keywords. It aims to unpaid traffic rather than paid traffic.
  10. Outsourced Delivery: there are few companies and creative bunch of groups who takes this up on behalf of reputed and established brands. The young professionals who is proficiency of digital media marketing, search engine optimization and algorithms related to augmented reality and virtual reality can be put forth for positive brand image.

The rise of the usage and availability of internet across geographic boundaries with economic viability, enhances the platforms of social media which is a driving factor for the next stage of the progression of branding. Point to be noted that the definition of conventional consumer or customers have changed drastically, there is a bent towards the coexistence and participatory. They do not want to consume the products or content anymore, rather tries to participate and so as the future of brand communication not to communicate anymore but to act, feel and intermittence. The power of influencers of social media brands like Instagram, YouTube and Facebook frequently depend on their users to aid and to create their value and how they should be perceived by the public. It further gives them their identity and positive image and enhances the brand durability. Various content sites like Buzzfeed, Amazon, The Huffington post and Yelp be contingent on reviewers to deliver their utmost convincing content. In this regard, many web-based companies and organizations handles their respective brand image and gets loyalty and revenue through active consumers which is unmatched and some thing interesting in these recent times. On the other hand, viral marketing, search engine optimization, and outsourced delivery permits their companies and organizations to have expansion visibility which reduces the cost of products delivery and saves millions of bucks and investment on advertising and infrastructure.

Basically, to conclude, if there is a brand admiration established by the consumers and they would like to see the advancement of prospect category of a specific product, then they must go ahead. This improvement on positive branding and effective brand communication may bring various advantages to one’s business, for example, good growth, profit and a prospect to meet their clients’ who might need to know the advancement of companies’ brand image. If an excellent inkling or creativity for new product is there to experiment that certainly the consumers/customers may accept or like, then probably yes, the companies must give it a try!

THE NANO SCIENCE AND ITS CONTRIBUTION IN TREATING CANCER

Nanoscience involves the study of the control of matter on an atomic and molecular scale. This molecular level investigation is at a range usually below 100 nm. In simple terms, a nanometer is one billionth of a meter and the properties of materials at this atomic or subatomic level differ significantly from properties of the same materials at larger sizes. Although, the initial properties of nano materials studied were for its physical, mechanical, electrical, magnetic, chemical and biological applications, recently, attention has been geared towards its pharmaceutical application, especially in the area of drug delivery. According to the definition from NNI (National Nanotechnology Initiative), nanoparticles are structures of sizes ranging from 1 to 100 nm in at least one dimension. However, the prefix “nano” is commonly used for particles that are up to several hundred nanometers in size. Nanocarriers with optimized physicochemical and biological properties are taken up by cells more easily than larger molecules, so they can be successfully used as delivery tools for currently available bioactive compounds.

Cell-specific targeting can be achieved by attaching drugs to individually designed carriers. Recent developments in nanotechnology have shown that nanoparticles (structures smaller than 100 nm in at least one dimension) have a great potential as drug carriers. Due to their small sizes, the nanostructures exhibit unique physicochemical and biological properties (e.g., an enhanced reactive area as well as an ability to cross cell and tissue barriers) that make them a favorable material for biomedical applications. It is difficult to use large size materials in drug delivery because of their poor bioavailability, in vivo solubility, stability, intestinal absorption, sustained and targeted delivery, plasma fluctuations, therapeutic effectiveness etc. To overcome these challenges nanodrug delivery have been designed through the development and fabrication of nanostructures. Nanoparticles have the ability to penetrate tissues, and are easily taken up by cells, which allows efficient delivery of drugs to target site of action. Uptake of nanostructures has been reported to be 15–250 times greater than that of microparticles in the 1–10 um range. Nanoparticles can mimic or alter biological processes (e.g., infection, tissue engineering, de novo synthesis, etc. These devices include, but not limited to, functionalized carbon nanotubes, nanofibers, self-assembling polymeric nano constructs, nanomembranes, and nano-sized silicon chips for drug, protein, nucleic acid, or peptide delivery and release, and biosensors and laboratory diagnostics. Various polymers have been used in the design of drug delivery system as they can effectively deliver the drug to a target site and thus increase the therapeutic benefit, while minimizing side effects. The controlled release (CR) of pharmacologically active agents to the specific site of action at the therapeutically optimal rateand dose regimen has been a major goal in designing such devices. The drug is dissolved, entrapped, encapsulated or attached to a NP matrix and depending upon the method of preparation, nanoparticles, nanospheres or nanocapsules can be obtained. Nanocapsules are vesicular systems in which the drug is confined to a cavity surrounded by a unique polymer membrane, while nanospheres are matrix systems in which the drug is physically and uniformly dispersed. Biodegradable polymeric nanoparticles have attracted considerable attention as potential drug delivery devices in view of their applications in the controlled release of drugs, their ability to target particular organs/tissues, as carriers of DNA in gene therapy, and in their ability to deliver proteins, peptides and genes through a per oral route of administration. Recent advances in the application of nanotechnology in medicine, often referred to as nanomedicine, may revolutionize our approach to healthcare. Cancer nanotechnology is a relatively novel interdisciplinary area of comprehensive research that combines the basic sciences, like biology and chemistry, with engineering and medicine. Nanotechnology involves creating and utilizing the constructs of variable chemistry and architecture with dimensions at the nanoscale level comparable to those of biomolecules or biological vesicles in the human body. Operating with sub-molecular interactions, it offers the potential for unique and novel approaches with a broad spectrum of applications in cancer treatment including areas such as diagnostics, therapeutics, and prognostics.

Nanotechnology also opens pathways to developing new and efficient therapeutic approaches to cancer treatment that can overcome numerous barriers posed by the human body compared to conventional approaches. Improvement in chemotherapeutic delivery through enhanced solubility and prolonged retention time has been the focus of research in nanomedicine. The submicroscopic size and flexibility of nanoparticles offer the promise of selective tumor access. Formulated from a variety of substances, nanoparticles are configured to transport myriad substances in a controlled and targeted fashion to malignant cells while minimizing the damage to normal cells. They are designed and developed to take advantage of the morphology and characteristics of a malignant tumor, such as leaky tumor vasculature, specific cell surface antigen expression, and rapid proliferation.

Nanotechnology offers a revolutionary role in both diagnostics (imaging, immune-detection) and treatment (radiation therapy, chemotherapy, immunotherapy, thermotherapy, photodynamic therapy, and anti-angiogenesis). Moreover, nanoparticles may be designed to offer a multifunctional approach operating simultaneously as an effective and efficient anticancer drug as well as an imaging material to evaluate the efficacy of the drug for treatment follow-up. In recent years, nanomedicine has exhibited strong promise and progress in radically changing the approach to cancer detection and treatment.

Skip to content